IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1983

Homo- and heteropolyatomic anions of the posttransition elements of group IV and V: Synthesis and crystal structure characterization

Susan Carol Critchlow Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Inorganic Chemistry Commons</u>

Recommended Citation

Critchlow, Susan Carol, "Homo- and heteropolyatomic anions of the post-transition elements of group IV and V: Synthesis and crystal structure characterization " (1983). *Retrospective Theses and Dissertations*. 8464. https://lib.dr.iastate.edu/rtd/8464

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

300 N. Zeeb Road Ann Arbor, MI 48106 · •

· · ·

8407063

Critchlow, Susan Carol

HOMO- AND HETEROPOLYATOMIC ANIONS OF THE POST-TRANSITION ELEMENTS OF GROUP IV AND V: SYNTHESIS AND CRYSTAL STRUCTURE CHARACTERIZATION

Iowa State University

Ph.D. 1983

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

.

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

1.	Glossy photographs or pages
2.	Colored illustrations, paper or print
3.	Photographs with dark background
4.	Illustrations are poor copy
5.	Pages with black marks, not original copy
6.	Print shows through as there is text on both sides of page
7.	Indistinct, broken or small print on several pages
8.	Print exceeds margin requirements
9.	Tightly bound copy with print lost in spine
10.	Computer printout pages with indistinct print
11.	Page(s) lacking when material received, and not available from school or author.
12.	Page(s) seem to be missing in numbering only as text follows.
13.	Two pages numbered Text follows.
14.	Curling and wrinkled pages
15.	Other

University Microfilms International ·

·

Homo- and heteropolyatomic anions of the post-transition elements of group IV and V: Synthesis and crystal structure characterization

by

Susan Carol Critchlow

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

> Department: Chemistry Major: Inorganic Chemistry

Approved:

Signature was redacted for privacy.

My Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

TABLE OF CONTENTS

	Page
INTRODUCTION	1
EXPERIMENTAL	7
Materials and Syntheses	7
Alloy preparation	7
Synthetic and analytic methods	9
K-Sn-Bi reactions	12
KPbSb and KGeSb reactions	18
Na-Ge and Li-Sn reactions	22
Data Collection and Structure Solution	28
Single crystal X-ray diffraction methods	28
$(2,2,2-\text{crypt}-K^+)_2 \text{Sn}_2 \text{Bi}_2^{2-} \cdot \text{en}$	29
$(2, 2, 2 - crypt - K^{+})_{2}^{2}Pb_{2}^{2}Sb_{2}^{2} - en$	33
$(2, 2, 2 - crypt - K^{+})_{2}^{5}Sb_{4}^{2} - \frac{1}{2}$	36
$(2, 2, 2 - crypt - K^{+})_{3}Sb_{7}^{3} \cdot 2en$	38
(2,2,2-crypt-K ⁺) ₃ Sng ³⁻ •1.5en	39
$(2,2,2-crypt-Na^+)_2Ge_4^2 - a$ partial structure solution	41
$(2,1,1-crypt-Li^+)_{4}Sn_{9}^{4}$ - another problem structure	43
RESULTS AND DISCUSSION	47
The $Sn_2Bi_2^{2-}$ and $Pb_2Sb_2^{2-}$ Structures	47
The Sb_4^{2-} and Sb_7^{3-} Structures	59
The Structure and Properties of Sng ³⁻	74
Anion charge assignment	81
ESR results	82
Magnetic susceptibility	85
NMR results	87
Anion configuration	90
Correlation of the h:e ratio to electron count	92
Molecular orbital calculations	94
Conclusions	103
Incomplete Studies	104
The $(2,2,2-crypt-Na^+)_2Ge_4^2$ structure	104
The (2,1,1-crypt-Li ⁺) ₄ Sn ₉ ⁴⁻ structure	109

.

		Page
FUTURE WORK		118
LITERATURE CI	TED	121
ACKNOWLEDGEME	INTS	127
APPENDIX A:	ADDITIONAL DISTANCES AND ANGLES	128
APPENDIX B:	CALCULATED AND OBSERVED STRUCTURE FACTORS $(x10)$ FOR $(2,2,2-crypt-K^+)_2Pb_2Sb_2^{2-} \cdot en$	145

LIST OF TABLES

Table	1.	Polyatomic anions of known structure	4
Table	2.	Alloy preparation	9
Table	3.	K-Sn-Bi-2,2,2-crypt reactions	13
Table	4.	Unit cells for K-Sn-Bi reaction products	16
Table	5.	KPbSb and KGeSb-2,2,2-crypt reactions	19
Table	6.	Unit cells for KPbSb and KGeSb reaction products	21
Table	7.	Na-Ge and Li-Sn-crypt reactions	23
Table	8.	Unit cells for Na-Ge and Li-Sn reaction products	24
Table	9.	Pb and Sb percentages for $Pb_2Sb_2^{2-}$	35
Table	10.	Positional and thermal parameters for (2,2,2-crypt-K) ₂ Sn ₂ Bi ₂ •en	48
Table	11.	Positional and thermal parameters for (2,2,2-crypt-K)2 ^{Pb} 2 ^{Sb} 2 ^{•en}	50
Table	12.	Distances and angles in Sn_2Bi_2^2 and Pb_2Sb_2^2	56
Table	13.	Positional and thermal parameters for (2,2,2-crypt-K) ₂ Sb ₄	60
Table	14.	Positional and thermal parameters for (2,2,2-crypt-K) ₃ Sb ₇ •2en	62
Table	15.	Distances and angles for Sb_4^{2-}	68
Table	16.	Comparative distances and angles for Sb_7^{3-} anions in (2,2,2-crypt-K ⁺) ₃ Sb ₇ ³⁻ ·2en and (2,2,2-crypt-Na ⁺) ₃ Sb ₇ ³⁻	71
Table	17.	Positional and thermal parameters for (2,2,2-crypt-K) ₃ Sn ₉ •1.5en	75
Table	18.	Distances, bond angles, and dihedral angles in the $\operatorname{Sn_9}^{3-}$ anion	77
Table	19.	ESR measurements for (2,2,2-crypt-K ⁺) ₃ Sn ₉ ³⁻ •1.5en	83

			Page
Table	20.	Magnetic susceptibility data	86
Table	21.	Some dihedral angles (δ , degrees) in nine-atom polyhedra	91
Table	22.	D _{3h} nine-atom clusters	93
Table	23.	EHMO parameters	96
Table	24.	Distances in idealized polyhedra used in EHMO calculations	97
Tab le	25.	EHMO calculations	98
Table	26.	Calculated charge distributions	103
Table	27.	Positional and thermal parameters for (2,2,2-crypt-Na) ₂ Ge ₄	105
Table	28.	Positional and thermal parameters for (2,1,1-crypt-Li) ₄ Sn ₉	110
Table	29.	Distances in $\operatorname{Sn_9}^{4-}$ A and B in (2,1,1-crypt-Li ⁺) ₄ Sn ₉ ⁴⁻	115
Table	A. 1	. Additional distances (Å) in (2,2,2-crypt-K) ₂ Sn ₂ Bi ₂ •en	129
Table	A. 2	• Additional angles (deg) in (2,2,2-crypt-K) ₂ Sn ₂ Bi ₂ •en	130
Table	A. 3	. Additional distances (Å) in (2,2,2-crypt-K) ₂ Pb ₂ Sb ₂ •en	131
Table	A. 4	• Additional angles (deg) in (2,2,2-crypt-K) ₂ Pb ₂ Sb ₂ •en	132
Table	A. 5	. Additional distances (Å) in (2,2,2-crypt-K) ₂ Sb ₄	133
 Table	A. 6	. Additional angles (deg) in (2,2,2-crypt-K) ₂ Sb ₄	134
Table	A. 7	• Additional distances (Å) in (2,2,2-crypt-K) ₃ Sb ₇ •2en	135
Table	A. 8	• Additional angles (deg) in (2,2,2-crypt-K) ₃ Sb ₇ •2en	136
Table	A. 9	. Additional distances (Å) in (2,2,2-crypt-K) ₃ Sn ₉ •1.5en	138
Table	A.10	. Additional angles (deg) in (2,2,2-crypt-K) ₃ Sn ₉ •1.5en	139
Table	A.11	. Distances (Å) in (2,2,2-crypt-Na) ₂ Ge ₄	141

. V

Page

Table A.12.	Angles (deg)	in	(2,2,2-crypt-Na) ₂ Ge ₄	141
-------------	--------------	----	---	-----

- Table A.13. Additional distances (Å) in (2,1,1-crypt-Li) Sn142
- Table A.14. Angles (deg) in (2,1,1-crypt-Li)₄Sn₉143

LIST OF FIGURES

Figure	1.	Approximate $[101]$ view of the unit cell of $(2,2,2-\text{crypt}-K^+)_2\text{Sn}_2\text{Bi}_2^{2-}$ en. For clarity, the anions and en molecules along the $(0,y,0)$ and $(1,y,1)$ axes are not included. Thermal ellipsoids are drawn at the 30% probability level	52
Figure	2.	Approximate [101] view of the unit cell of (2,2,2-crypt-K ⁺) ₂ Pb ₂ Sb ₂ ²⁻ •en. (Note the origin position relative to Figure 1.) Thermal ellipsoids are drawn at the 30% probability level	53
Figure	3.	The $Sn_2Bi_2^{2-}$ (left) and $Pb_2Sb_2^{2-}$ (right) anions, with <u>b</u> approximately vertical	55
Figure	4.	Approximate $[110]$ view of the unit cell of $(2,2,2-crypt-K^+)_2Sb_4^{2-}$ with thermal ellipsoids at the 30% probability level. For clarity, only one consistent set (b) of the disordered carbon atoms is shown	66
Figure	5.	Two views of the Sb_4^{2-} anion	67
Figure	6.	Approximate $[00I]$ view of the unit cell of $(2,2,2-crypt-K^+)_3Sb_7^{3-}\cdot 2en$. For clarity, crypt carbon atoms are not included, and the N-K-N axes are differentiated. The dashed lines indicate H-bonding	70
Figure	7.	The Sb $_7^{3-}$ anion, with approximate C $_{3v}$ axis vertical	72

Approximate $[00\overline{I}]$ view of the unit cell of $(2,2,2-crypt-K^+)_3Sn_9^{3-}\cdot 1.5en$. For clarity, crypt carbon atoms are not included, and the N-K-N axes are Figure 8. differentiated 79

Figure 9. Two views of the ${\rm Sn_9}^{3-}$ anion 80

- ESR spectra for $(2,2,2-crypt-K^+)_3Sn_9^{3-}\cdot 1.5en:$ top, 'single' crystal (sample 2, see Table 19) at 9.5935 Figure 10. GHz; middle, frozen en solution (sample 3) at 9.5934 GHz; bottom, solution of KSn₂ + crypt in en (sample 5) at 9.7592 GHz 84
- Figure 11. Magnetic susceptibility for $(2,2,2-crypt-K^+)_3 Sn_9^{3-1.5en}$ (sample 1) as χ_{corr} vs 1/T 88

Page

Figure	12.	¹¹⁷ Sn NMR spectra (note difference in abscissa scale)	89
Figure	13.	EHMO orbital energies. Arrows denote the HOMO and its occupancy in each case	99
Figure	14.	The Ge $_4^{2-}$ anion showing both 0.50 occupancy tetra- hedra with C ₃ axis vertical	106
Figure	15.	Two views of $\operatorname{Sn_9}^{4-}$ cluster A (C_{4v}) in (2,1,1-crypt-Li ⁺) ₄ Sn ₉ ⁴⁻	113
Figure	16.	Two views of Sn_9^{4-} cluster B (\mathcal{D}_{3h}) in (2,1,1-crypt-Li ⁺) $_4Sn_9^{4-}$	114

Page

INTRODUCTION

About 90 years ago, Joannis first reported that lead dissolved in solutions of sodium in liquid ammonia to produce an intensely green colored solution.¹ Kraus, in 1907, demonstrated the electrolytic nature of this solution, and noted the characteristic red color of similar sodium-tin solutions.² In 1917, Smyth deduced a stoichiometry of about 2.25 lead atoms to one sodium atom from electrolysis measurements in liquid ammonia, ³ while Peck, in 1918, found that antimony dissolved in sodium ammonia solutions to give a deep red color up to a maximum amount of 2.33 antimony atoms per sodium.⁴ Kraus and Kurtz observed that similar solutions could be prepared through the reduction of Sn, Pb, Sb or Bi halides by sodium in liquid ammonia, or through the dissolution of alkali metal-tin or alkali metal-lead alloys in ammonia.⁵ These results led Kraus to propose the existence of complex anions such as Sb³⁻·Sb₆ and $Pb^{4-}\cdot Pb_8$ or $Pb_9^{4-}\cdot 6.7$

In the 1930s, Zintl and coworkers systematically investigated such homopolyatomic anions, by potentiometric titrations of sodium with halide or chalcogenide salts of the main group elements in liquid ammonia and/or by analysis of products after exhaustive extraction of alloys with ammonia.⁸⁻¹¹ For group IV and V metals, they identified the following anions: Sn_9^{4-} , Pb_7^{4-} , Pb_9^{4-} , As_3^{3-} , As_5^{3-} , As_7^{3-} , Sb_3^{3-} , Sb_7^{3-} , Bi_3^{3-} , Bi_5^{3-} , and $'Bi_7^{3-}$ ' (actually $Bi_{5.85}^{3-} \triangleq Bi_4^{2-12}$). (Their attempts to produce germanium anions were not too successful, though Johnson and Wheatly in 1934 reported an intensely red solution could be prepared by

the reaction of sodium and finely divided germanium in ammonia.¹³) However, all attempts to isolate crystalline solids for structural studies failed; the $Na(NH_3)_n^+$ salts which formed on solvent evaporation were amorphous and lost ammonia to revert to known intermetallic phases plus occasionally the element itself.

Many of the binary compounds between alkali or alkaline earth metals and main group elements, which are now commonly known as Zintl phases, do contain homoatomic clusters, chains or networks. Schäfer, Eisenmann, and Müller have reviewed the structure and bonding of these Zintl phases, ¹⁴ and the various clusters are also discussed in von Schnering's review of main group cluster bonding.¹⁵ However, in most cases complete charge transfer to form discrete anions cannot be presumed to occur, and the clusters found in Zintl phases do not generally correspond to the polyatomic anions seen in solution, especially for the heavier elements.

The key to successful isolation of polyatomic anions as stable salts have been the application of 2,2,2-crypt¹⁶ as an alkali metal complexing agent. This octadentate ligand $(N(C_2H_4OC_2H_4OC_2H_4)_3N)$ is one of a family of macrobicyclic ligands which form complexes with alkali or alkaline earth cations that are not only highly stable but can be quite selective due to differing cavity size.¹⁷ 2,2,2-crypt in particular is ideally suited for K⁺ ions. In the polyatomic anion salts, this complexation serves both to increase the solubility of the anion and to prevent the reversion to the otherwise more energetically favorable intermetallic phases.

Numerous polyatomic anions have recently been synthesized by this means and structurally characterized.¹⁸ Table 1 lists the anions which are pertinent to this work, principally those involving group IV or V post-transition elements (the polychalcogenide anions, which generally form only simple chains, and the polyphosphide anions, which are found mostly in Zintl phases, are excluded from this discussion). These elements are rich in their ability to form a wide variety of clusters. The configurations of the anions are in basic accord with Wade's rules²⁹ for skeletal electrons, and there are not surprisingly many isoelectronic analogs among the homopolyatomic cations and the polyboranes.

There are examples of polyatomic anion salts which do not employ crypt cations. Kummer and coworkers isolated the compounds $(Na_4 \cdot 7en)Sn_9$, $(Na_4 \cdot 5en)Ge_9$ and $(Na_3 \cdot 4en)Sb_7$ and reported the partial crystal structure and some reaction results for the tin compound.^{30,31} The Sn_9^{4-} anion found is a very distorted tricapped trigonal prism which still retains some direct interaction with two of the sodium atoms. Very recently, the Sn_9^{4-} anion has also been isolated as both the $(CH_3)_4N^+$ and the $K(HMPA)_2^+$ salts;³² however, these compounds are of marginal stability and have only been identified by elemental analysis and ¹¹⁹Sn solution nmr.

Recent investigations into the nature of such anions in solution by nmr have added valuable information. Rudolph and coworkers established the fluxionality of Sn_9^{4-} in solution by the observation of a single nmr resonance split by intramolecular coupling between ¹¹⁹Sn and ¹¹⁷Sn.^{33,34} The entire $\text{Sn}_{9-x}\text{Pb}_x^{4-}$ (x = 0-9) family has been established by ²⁰⁷Pb and

Anion	Symmetry	Configuration	Skeletal Electrons
Homoatomic	Examples		
^{2–} 2–	D _{3h}	trigonal bipyramid	12
Sn ₅ ²⁻	D _{3h}	trigonal bipyramid	12
5n ₉ ³⁻	D _{3h}	tricapped trigonal prism	21
Sn9 ⁴⁻	C _{4v}	unicapped square antiprism	22
Ge9 ²⁻	C _{2v}	distorted tricapped trigonal prism	20
Ge9 ⁴⁻	C _{4v}	unicapped square antiprism	22
Bi ₄ ²⁻	D _{4h}	square plane	14
sb ₄ ²⁻	D _{4h}	square plane	14
s ₇ 3-	c _{3v}	nortricyclene	24
3- As ₁₁	D ₃	'UFOsane'	36
Heteroatom	ic Examples		
Sn ₂ Bi2 ²⁻	∿Td	tetrahedron	12
Pb2Sb2	∿Td	tetrahedron	12
${^{\text{Tl}_2\text{Te}2}}^{2-}$	C _{2v}	butterfly	12
TlSn ₈ ³⁻	C _{2v} (D _{3h} ^b) tricapped trigonal prism	20
TlSn ₉ ³⁻	C_{4v} (D _{4d} ^b) bicapped square antiprism	22

Table 1. Polyatomic anions of known structure^a

^aCrypt-K⁺ or crypt-Na⁺ salts.

^bConfiguration neglecting heteroatom.

Isoelectronic Analogs	Crystal Characteristics	References
(_{P4} 3-	ruby red chips	19
) ¹ ⁵	orange-brown plates	19
-	reddish-black plates	20, this work
Big ⁵⁺ (D _{3h})	dark red rods	21
^B 9 ^H 9 ²⁻ Sn9 ⁴⁻	deep red rods	22
$\begin{pmatrix} 2 \\ - 2 \\ + - 2 \\ + \end{pmatrix}$	greenish-black crystals	12
$\int Se_4^{-r}$, Te_4^{-r}	blue-black wedges	23, this work
P7 ³⁻ , As7 ³⁻ , P4S3	brown needles, rods	23, 24, this work
P ₁₁ ³⁻	deep red rods	25
	black hexagonal plates	26, this work
$\int_{P_4}^{P_4}$, so ₄	black hexagonal plates	this work
-	dark brown blocks	27
^B 9 ^H 9 ²⁻ ^B 10 ^H 10 ²⁻	deep red-brown crystals	28

.

¹¹⁹Sn nmr, ^{33,34} and the $Sn_{9-x}Ge_x^{4-}$ family, Sn_4^{2-} , and $T\ell Sn_8^{5-}$ have similarly been identified in part by ¹¹⁹Sn nmr.³⁵

The goal of this research has been the production of new polyatomic anions. For homoatomic systems, the method has been to utilize different alkali metals or crypt ligands; hopefully changing the starting alloy or the cation size from that in previous investigations could promote the isolation of new species. For the heteroatomic systems, the expectation was that the use of elements from different groups would lead to new electronic and structural configurations. The results include the crystal structures of four new anions, Sb_4^{2-} , 23 Sn_9^{3-} , 20 $\text{Sn}_2\text{Bi}_2^{2-26}$ and $\text{Pb}_2\text{Sb}_2^{2-}$; the previously known Sb_7^{3-} anion as a new salt; 23 and two structures that are only partially solved due to disorder, the one apparently containing Ge_4^{2-36} and the other having the known Sn_9^{4-} anion occurring in both C_{4v} and D_{3h} configurations.

EXPERIMENTAL

Materials and Syntheses

All manipulations were performed either in an inert-atmosphere $(N_2 \text{ or Ar})$ drybox or on a vacuum line, as both the starting reactants and the products are generally moisture and air sensitive. Sources of the elements are as follows: lithium (Fischer Scientific Co.), sodium (Fischer Scientific Co.), potassium (J. T. Baker Chemical Co., "purified"), germanium (United Mineral and Chemical, zone refined), tin (J. T. Baker Chemical Co.), lead (Fischer Scientific Co.), antimony (A. D. Mackay, Inc., 99.999%), and bismuth (Oak Ridge National Laboratory, 99.999%). Lithium must be handled in an inert atmosphere other than nitrogen as the freshly cut metal reacts rapidly and exothermically with N₂. 2,2,2-crypt (C₁₈H₃₆N₂O₆; 4,7,13,16,21,24-hexaoxa-1,10-diazobicyclo-(8.8.8) hexacosane) was used as obtained from Merck, as was 2,2,1-crypt (C₁₆H₃₂N₂O₅; 4,7,13,16,21-pentaoxa-1,10-diazobicyclo(8.8.5)tricosane) and 2,1,1-crypt (C₁₄H₂₈N₂O₄; 4,7,13,18-tetraoxa-1,10-diazobicyclo(8.5.5)eicosane). Ethylenediamine (en, Fischer Scientific Co.) was first dried by refluxing over CaH₂ for 2 days, then distilled into a storage flask containing molecular sieves.

Alloy preparation

Various alloys were prepared by fusion of stoichiometric amounts of the appropriate elements in a sealed tantalum tube (heliarc welded) enclosed in an evacuated fused silica jacket. After heating to an appropriate temperature in a furnace for about two hours, most alloys

were quenched to give a more reactive microcrystalline product. Synthesis conditions are summarized in Table 2. When feasible, powder patterns (Debye-Scherrer or Guinier) were compared with calculated patterns³⁷ for known phases.

There are five compounds reported in the potassium-tin system: K_2Sn , KSn_2 , KSn_4 , KSn and K_8Sn_{46} .³⁸ However, only the latter two have known structures. The alloy of composition KSn_2 synthesized here was not homogeneous; the powder pattern contained elemental tin lines as well as lines presumably from a tin-poorer K-Sn alloy, not matching those calculated for KSn,³⁹ however.

For the Na-Ge system, NaGe⁴⁰ is the only known phase, containing Ge_4 tetrahedra.⁴¹ The powder pattern for NaGe_{0.8} matched that calculated for NaGe. (Off-stoichiometry alloys were deliberately chosen to increase reactivity.) NaGe_{1.6} and NaGe_{3.8} contain an unknown phase, probably of stoichiometry close to NaGe₂ as the NaGe_{3.8} powder pattern exhibited strong Ge elemental lines as well as all the NaGe_{1.6} lines.

There are many known phases in the Li-Sn system.^{42,43} The Li-Sn alloys prepared here had powder patterns matching the calculated patterns very closely. Comparable data for the ternary alloys are not available. The KPbSb alloy was visibly inhomogeneous; the molten alloy solidified progressively from apparently a Sb-rich to a Pb-rich phase during quenching.

Table	2.	Alloy	preparation
-------	----	-------	-------------

Alloy	Temperature, ^o C	Conditions	Color
KSn ^a 2	975	quenched	dark gray
K ₃ Bi ₂ ^b	700	slowly cooled, annealed <442 ⁰	brown
KSnBi	975	quenched	golden
KGeSb	970	quenched	dark gray
KPbSb	970	quenched	dark gray
NaGe0.8	1000	quenched	gray
NaGe 1.6	1000	quenched	dark gray
NaGe a 3.8	1000	quenched	light gray
Li ₇ Sn ₃	800	cooled, annealed 480 ⁰	silver
Li ₅ Sn	800	quenched, annealed 693 ⁰	bluish-silver
Li ₁₃ ^{Sn} 5	800	quenched, annealed 711 ⁰	purplish-silver

^aPrepared by Mike Denney.

^bPrepared by Al Cisar, cited in reference 12.

Synthetic and analytic methods

Reactions of alloy with crypt are generally performed as follows: 0.1 g of 2,2,2-crypt or 0.1 ml of 2,2,1- or 2,1,1-crypt and a stoichiometric or slight excess amount of alloy for all the alkali metal to be complexed are loaded into a three-armed apparatus equipped with two Teflon needle valves (there is no valve between the inner two arms).⁴⁴ After evacuation, about 15 ml of en are added using an ice water-room temperature gradient on the vacuum line. The alloys all evolve small amounts of hydrogen gas from reduction of the solvent, and there is always some undissolved alloy residue present.

Important reaction parameters include the length of time the solution is allowed to stand over the alloy before attempting to grow crystals, whether or not the reaction is heated, whether crystals are grown from a solution in contact with or decanted from the alloy residue, and the period of time for crystal growth (this includes the time spent concentrating the solution to the saturation point). Crystals are best grown by <u>slow</u> removal of solvent, either by gently heating the solution arm (to $\sim 40^{\circ}$ C) so that en gradually distills to the second arm, or by using the thermal gradient between room temperature (solution arm) and a Dewar filled with water ($\sim 18^{\circ}$ C, for the second arm). The latter method generally produces the better crystals, especially for products soluble in en.

Some reaction products were analyzed by X-ray fluorescence, microprobe, or atomic absorption. ESR measurements were made on a Bruker ER 200D-SRC spectrometer with an Oxford ESR-900 flow-through cryostat, DTC-2 digital temperature controller and a Hewlett-Packard 5342A microwave frequency counter. Magnetic susceptibility data were measured on a Faraday balance constructed in Ames Laboratory⁴⁵ with a Cahn RH Electrobalance and a platinum resistance thermometer.

However, since reaction amounts are small and the products are often multiphase, single crystal X-ray crystallography is the most useful

method of analysis. Reaction vessels were opened in a dry box especially designed for crystal mounting. Suitable crystals were mounted into 0.3 or 0.5 mm capillaries using a small amount of vaseline to hold the crystal in place if necessary, and the capillaries were sealed temporarily with grease, then permanently with a small torch outside the dry box. Many crystals were examined with oscillation and Weissenberg photographs using a standard camera and Ni-filtered Cu radiation, though generally the best crystals were saved for diffractometer use, as many of these phases decay too rapidly when exposed to X-rays.

Unit cell dimensions alone can be very enlightening. The cell volume in these polyatomic anion-crypt structures is relatively independent of the anion and directly related to the number of crypt cations, which in turn indicates the probable anion charge.²⁷ 2,2,2-crypt-K⁺ and 2,2,2-crypt-Na⁺ salts average about 670 and 640 Å³ per crypt respectively, though large bulky anions, such as As_{11}^{3-} , can increase these values up to 70 Å³. The presence of en solvent molecules is usually indicated by an increase of about 30 Å³ per crypt per independent en. In passing, it should be noted that the majority of 2,2,2-crypt-K⁺ salts do contain solvent molecules, while none of the known Na⁺ ones do, and also the Na⁺ salts tend to occur in higher symmetry cells.

Also, anions with a 2- charge all occur in similar unit cells of roughly hexagonal symmetry with two axes near 12 Å, the third axis a multiple of about 11 Å, and an opposing angle near 120° or 60° . Examples include those 2- anions listed in Table 1, Te_3^{2-} , ⁴⁶ HgTe_2^{2-} , ⁴⁷ and $\text{As}_2\text{Se}_6^{2-48}$ (some of these unit cell parameters can be compared later in

Tables 4, 6 and 8). There is also a group of similar unit cells apparently containing 3- anions, with approximate dimensions a \approx 15 Å, b \approx 21 Å, c \approx 14 Å, a \approx 95°, $\beta \approx$ 103° and $\gamma \approx$ 89°, though only the four found in Table 1 are of known structure. The large crypt cations evidently dominate the packing in the unit cells; unfortunately, this sometimes leads to anion disorder, either of a positional variety or indicating a lack of selectivity (two different anions disordered on the same site).

K-Sn-Bi reactions

Table 3 summarizes the conditions used for reactions with 2,2,2crypt in the binary K-Sn and the ternary K-Sn-Bi systems. The original intent was to produce a mixed cluster such as $\text{Sn}_8\text{Bi}^{3-}$ or $\text{Sn}_7\text{Bi}_2^{2-}$ (isoelectronic with Sn_9^{4-}), which accounts for the 7Sn:lBi ratio used. The numbers listed under products represent a <u>very</u> rough guesstimate of what percent of the total product might be a particular phase, based on visual observations and oscillation photos or indexing to identify individual crystals. It is clear that reaction conditions greatly influence the products. For the ternary system it is not surprising that several different phases can be produced, but even the binary KSn₂ alloy can react to form one of three phases depending on the conditions.

When en and crypt are added to the alloys KSn_2 and K_3Bi_2 , they dissolve to give red and green colors, respectively, indicating initial formation of homopolyatomic anions which evidently interact in solution (or more likely at the alloy surface) to form heteroatomic species. The

	Over	Soln.		Heated	Crystal	Products, %					
Alloys	alloy	color	Decant	30-40 ⁰ C	growth	I	II	III	IV	v	VI
7KSn ₂ + K ₃ Bi ₂ (1)	1 d	red-brown	no	yes	1 mo			30			
$7KSn_{2} + K_{3}Bi_{2}$ (2)	3 d	red-brown	no	3 d	2 mo	30		60			
$7KSn_{2}^{2} + K_{3}Bi_{2}^{2}$ (3)	3 wk	red-brown	yes	1 d	4 d	60			30		
KSn ₂ ⁺ K ₂ Bi ₂ ⁻	2 wk	red-green	yes	no	l wk	10	20	60			
KSnĒi	l wk	red-brown	yes	по	l wk	95				3	
KSn ₂ (1)	3 wk	blood-red	yes	no	4 d					90	
KSn_2^2 (2)	4 d	blood-red	no	no	2 mo						85
KSn_2^{-} (3)	3 d	blood-red	yes	no	3 wk					95	
KSn_2^{-} (4)	1 d	blood-red	yes	no	2 wk				85	5	
KSn_2^{-} (5)	3 d	blood-red	yes	no	3 wk					80	

Table 3. K-Sn-Bi-2,2,2-crypt reactions

Products

 $I = Sn_2Bi_2^{2-} --black pseudohexagonal chunky plates, sometimes with a bluish-gold sheen.$ $II = Bi_4^{2-} (known) --black wedges with a purplish sheen.$ $III = Sn_xBi_y^{3-} ? --black rods.$ $IV = (Sn_x)^{7-} ? --black rods.$ $V = Sn_9^{3-} --reddish-black thin plates and rods.$ $VI = Sn_9^{4-} ? --brownish-black rhomboid-shaped plates.$

7:1 ratio reactions produced dark reddish-brown solutions. Although heating the solution in the first reaction (and in the process slowly transferring en to a second arm) did produce crystals, the quality was not good as they grew too rapidly and redissolved too easily in any refluxing en. Slow solvent removal using the water-air temperature gradient generally produced better crystals.

The reaction $KSn_2 + K_3Bi_2$ in a 1:1 ratio gave a red-green dichroic solution similar to that described for bismuth alloy reactions.¹² In this case Bi_4^{2-} crystals (phase II) formed first, irreversibly, and as they crystallized the solution turned red-brown, at which point the other phases began growing.

The ternary alloy KSnBi initially produced a gold colored solution which darkened to a similar reddish-brown, so heteropolyatomic anions are probably present from the beginning. This reaction produced beautiful, large crystals of phase I, with the very small amount of phase V forming only when the last traces of solvent were trapped off.

The expected product for the reaction of 2,2,2-crypt with KSn_2 was $(2,2,2-crypt-K^+)_4Sn_9^{4-}$; this anion is well known as the 2,2,2-crypt-Na⁺ salt, but the potassium salt would not necessarily be isostructural. The reaction gives a dark blood-red colored solution. After about 24 hours, gray material, which is presumably tin metal, begins plating slowly out on the walls of the apparatus. Phase V is easily produced by slow solvent removal, if the solution is first decanted after stand-ing a couple of days over the alloy residue (reactions 1, 3 and 5). These

rods or long plates often grow together in an X-shaped fashion. Instead of the expected ${\rm Sn_9}^{4-}$ anion, this phase contains the new ${\rm Sn_9}^{3-}$ anion.

In the second KSn₂ reaction, where unlike the others en was initially added to alloy alone rather than to an alloy-crypt mixture, tin metal plated out immediately and in a much larger quantity. The solution was also not decanted from the alloy during attempts to grow crystals, and when the initial solvent removal gave poorly formed crystals, these were redissolved. The second time solvent was removed, phase VI formed as singly growing plates, very distinctive in habit. In the fourth KSn₂ reaction, the solution was probably decanted from the alloy before it had fully reacted (before any gray material plated out). This apparently is important, since the majority of the product is phase IV.

All six phases in this system were at least indexed on the diffractometer, giving the unit cells listed in Table 4. Phase I has been shown by single crystal work and conventional analysis to be 2,2,2-crypt- K^+) $_2$ Sn $_2$ Bi $_2^{2-}$ ·en. Analysis of the KSnBi reaction product by atomic absorption gave the following: calc: Bi, 27.0; Sn, 15.3; K, 5.06%; found: Bi, 25.2; Sn, 15.0; K, 5.47%. An examination of individual crystals including the data crystal by electron microprobe also gave mole ratios near 1:1 for Sn:Bi; however, the weight percentages were inconsistent and the potassium values were always quite high. ESR measurements on single crystals gave no evidence of unpaired spin density.

Phase II, $(2,2,2-\text{crypt-K}^+)_2\text{Bi}_4^{2-}$, was previously known.¹² Crystals of phase III, though well formed, exhibited extremely poor diffraction ability, and a crystal suitable for data collection was never found.

	Products ^a	a	<u>Å</u>	<u> </u>	<u></u>	deg. β	<u> </u>	<u>v,Å³</u>	V/Cp	Temp. oc	Note	s
I	(CpK) ₂ Sn ₂ Bi ₂ •en	12.640	20.943	12.353	90	118.97	90	2861	715		_b	
11	(CpK) ₂ Bi ₄	11.604	11.796	11.096	98.12	98.02	61.37	1315	658	F	Ref.	12
III	(CpK) ₃ Sn _x Bi _y ?	15.44	20.21	14.80	94.2	109.2	89.9	4349	725		_c	
IV	(CpK) ₇ Sn _x ?	30.51	36.01	17.82	90	93.1	90	19550	698		_ ^c	
v	(CpK) ₃ Sn ₉ •1.5en	15.050 15.002	21.983 21.794	14.106 14.060	99.43 99.77	101.61 101.59	89.64 89.69	4508 4436	751 739	-60	_ъ _ъ	
VI	(CpK) ₄ Sn ₉ ?	15.79	2 6. 50	15.47	91.8	116.2	79.8	5715	714		_ ^c	
For	Comparison											
(СрК) ₃ -											
(TL	$(sn_8^{TlSn_9})_{1/2}$ en	15.141	22.195	14.113	98.72	101.04	89.44	4600	767	F	Ref.	28
(CpN	a) ₄ Sn ₉	16.655	21.207	15.370	107.98	103.43	81.70	5007	626	5 F	Ref.	21
(CpN	a) ₂ Sn ₅	11.620	11.620	22.160	90	90	120	2591	648	F	Ref.	19

Table 4. Unit cells for K-Sn-Bi reaction products

^aCp = 2,2,2-crypt. ^bFrom LATT. ^CFrom indexing after standard selection.

No additional analytical work was done, so the anion is not necessarily a heteroatomic species. Volume considerations indicate a 3- anion, so an anion such as $\text{Sn}_8\text{Bi}^{3-}$ is a likely possibility, but the poor diffraction quality is probably a result of intrinsic disorder in the crystal. Though the stoichiometry would seem to favor a tin-rich phase, the unknown Bi₇³⁻ anion cannot be eliminated as a possibility.

Phase IV diffracts well and good single crystals have been found but the unit cell is so large as to make data collection impractical. Oscillation and Weissenberg photographs show extinctions appropriate for the nonstandard $P2_1/a$ space group. The unique volume would therefore be 4887 $Å^3$ (z=4) and the volume per crypt would be 611, 698, or 815 $Å^3$ for 8, 7, or 6 independent crypts, respectively. The first value is much too small, and the last is 50 $Å^3$ greater than the largest value so far observed. While one cannot rule out having 6 unique crypts with some large bulky anions and several solvent molecules to produce such a large volume per crypt, the more likely possibility is 7 unique crypts (or 28 total in the cell), giving a formula of $(2,2,2-\text{crypt-K}^+)_7 \text{Sn}_x^{7-}$. It is highly unlikely that one anion would have such a high charge; probably there are two unique anions such as Sn_9^{4-} and Sn_9^{3-} , or, less likely, some disordered combination of a 4- and 2- anion that gives an average 7- charge. The product of the fourth KSn_2 reaction does exhibit an ESR signal, similar to but much weaker than that exhibited by (2,2,2-crypt- K^+)₃Sn₉³⁻.1.5en, so either some of this phase is also present in the product or phase IV is paramagnetic, which it must be if it actually contains a 3- tin anion.

Crystal structure analysis, ESR, and magnetic susceptibility measurements have proved phase V is $(2,2,2-\text{crypt}-K^+)_3\text{Sn}_9^{3-}\cdot1.5\text{en}$. The product of the fifth KSn₂ reaction was analyzed by atomic absorption, giving the following weight percentages: calc: K, 4.88; Sn, 44.41%; found: K, 4.79; Sn, 43.45%. Also, X-ray fluorescence demonstrated the absence of any other element heavier than Al. It is believed this product is not pure phase V, since its magnetic susceptibility is lower than that measured for the product from reaction 3; perhaps there was some decomposition. However, as the analysis indicates exactly a 3Sn:1K ratio, any contaminant cannot deviate too far from this ratio.

Phase VI is triclinic with a volume appropriate for 8 crypts in the cell. Though it is clearly not isostructural with the known $(2,2,2-crypt-Na^{+})_4Sn_9^{4-}$,²¹ this phase is most probably $(2,2,2-crypt-K^{+})_4Sn_9^{4-}$, and since this anion is so well known, the compound was not investigated further.

KPbSb and KGeSb reactions

Table 5 lists the conditions for reactions of KPbSb or KGeSb with 2,2,2-crypt in en. All crystals were grown by slow solvent removal using the water-air temperature gradient. KPbSb reacts to form a dark reddish-brown solution. When the solution was decanted before crystal growth, phase II was the major product. It is not clear why the first and third reactions produced a different minor phase, I or III, since the conditions were essentially the same. These formed first and III deposited irreversibly. The inhomogeneity of the alloy may be a factor

		0ver	Soln.		Crystal		Products, %						
Alloy		alloy	color	Decant	growth	Ī	II	III	IV	V			
KPbSb	(1)	l wk	brown	yes	2 wk	30	70						
KPbSb	(2)	5 d	brown	no	1 wk			15		70			
KPbSb	(3)	4 d	brown	yes	3 wk		75	20	3				
KGeSb	(1)	l wk	red-brown	yes	2 wk			20	5				
KGeSb	(2)	5 d	red-brown	no	l wk			15	50	30			

Table 5	KDPCh and	KCoSh-2 2 2-crypt	reactions
Table 2.	Krosp and	KGeoD-Z,Z,Z-Crypt	reactions

_	-	
Pr	odu	icts

$I = Pb_2Sb_2^{2-}$	black pseudohexagonal plates and chunks.
$II = Pb_{x}Sb_{y}^{3-}?$	long thin black blades.
$III = Sb_4^{2-}$	bluish-black wedges.
$IV = Sb_7^{3-}$	dark red rods.
$V = Sb_7^{3-}$?	dark red rods or laths.

.

here. The presence of alloy residue in the second reaction gave quite different results; apparently the products contain no lead.

KGeSb reactions form a more reddish colored solution. When the solution was decanted from the alloy residue before crystal growth, phase III again formed initially and irreversibly, but the major product was poorly crystalline needles and frayed blades which could not be mounted. The small amount of phase IV that formed grew in the apparatus arm where alloy residue was present. When in the second reaction the solution was not decanted from the alloy, only homopolyatomic antimony salts were produced.

Unit cell parameters are listed in Table 6. Phase I crystals are very similar in appearance to the $\text{Sn}_2\text{Bi}_2^{2-}$ salt, and the crystal structure does indeed demonstrate that this phase is the isostructural $(2,2,2-\text{crypt-K}^+)_2\text{Pb}_2\text{Sb}_2^{2-}$ en salt. Similarly, phase III greatly resembles $(2,2,2-\text{crypt-K}^+)_2\text{Bi}_4^{2-}$ crystals, being reddish-black in color, but exhibiting a bluish reflectance and sometimes a blue color when crushed $(\text{Bi}_4^{2-}$ crystals appear green when crushed). The unit cell dimensions and crystal structure solution prove this to be the isostructural $(2,2,2-\text{crypt-K}^+)_2\text{Sb}_4^{2-}$ salt. This phase is also observed as the major product of the reaction of KAuSb with 2,2,2-crypt, occurring as diamond-shaped plates.⁴⁹

Phase II forms as long thin blades. When a hard vacuum is applied to remove all solvent, they sometimes curl slightly, and cutting the crystals when mounting tends to damage them. A crystal good enough for data collection was not found, but the cell volume would indicate a 3-

	Products	a	Å b	C	α	β	<u> </u>	v, ³	V/Cp	Temp. ^O C	Notes
I	(CpK) ₂ Pb ₂ Sb ₂ •en	12.589	20.735	12.201	90	118.97	90	2786	709	-80	_ ^b
II	(CpK) ₃ Pb _x Sb _y ?	15.12	19.82	14.41	94.3	108.8	90.9	4074	679		_ ^c
III	(CpK) 2Sb4	11.555	11.795	11.067	97.60	97.80	61.24	1306	653		_ ^b
IV	(CpK) ₃ Sb ₇ •2en	14.589	21.753	13.872	92.46	99.63	89.12	4331	722	-80	_ ^b
v	(CpK) ₃ Sb ₇ ?	14.85	22.02	13.96	93.7	106.1	91.7	4373	729		_c
For	Comparison										
(CpK) ₂ Sn ₂ Bi ₂ •en	12.640	20.848	12.353	90	118.97	90	2861	715		Ref.26
(СрК) ₂ ^{Bi} 4	11.604	11.796	11.096	98.12	98.02	61.37	1315	658		Ref.12
(CpN	a) ₃ Sb ₇	23.292	13.791	25.355	90	108.56	90	7721	643		Ref.24

^aCp = 2,2,2-crypt. ^bFrom LATT. ^CFrom indexing after standard selection.
anion. The volume per crypt is noticeably smaller than most 3- anion salts which contain 1-2 en molecules, so there probably are no solvent molecules, but it may also indicate a relatively small anion (perhaps $PbSb_3^{3-}$?). A semiquantitative analysis by X-ray fluorescence of some of the product from reaction 3 indicates phase II must be quite antimonyrich, even taking into account the presence of the Sb_4^{2-} phase. The mole ratio obtained was about 9K:1Pb:21Sb.

The crystal structure solution of phase IV proves it to be $(2,2,2-\text{crypt-K}^+)_3\text{Sb}_7^{3-}\cdot2\text{en}$. In the second KGeSb reaction, phase IV and V both formed as rod-shaped crystals, indistinguishable by eye. Several crystals of both phases were indexed; the lattice constants for the phase V crystals from this KGeSb reaction and for the larger lath-shaped crystals produced by the second KPbSb reaction were identical. Microprobe analyses of the products of these two reactions also could not distinguish between phases IV and V but did indicate little if any Ge or Pb in the products. (Again, microprobe for these compounds is at best semiquantitative, and cannot clearly distinguish Sb_4^{2-} from Sb_7^{3-} .) The unit cell dimensions for IV and V are very similar except for the β angle, and since V must contain a homopolyatomic antimony anion, the most likely possibility is another polymorph of Sb_7^{3-} .

Na-Ge and Li-Sn reactions

Table 7 summarizes the reactions attempted in these systems while pertinent unit cell dimensions are listed in Table 8. The cavity inside 2,2,2-crypt is most appropriate for K^+ ; the undersized Na⁺ ion causes

Alloy	Crypt	Solution color	Reaction conditions	Time	Products
NaGe 0.8	2,2,2	yellow-orange	heated 43 ⁰	2 wk	I orange cubes
NaGe1.6 or NaGe3.8	2,2,2	red-orange	heated 35-40 ⁰ or slow solvent removal	2 d	II red prisms and rods
NaGe0.8	2,2,1	orange	heated 42 ^{0ª} , ea ^b added	>3 yr	black oil
NaGe1.6	2,2,1	red/green-brown	heated 50 ^{0^a, ea added}	2 yr	light orange plates
NaGe 3.8	2,2,1	red/green-brown	heated 42 ^{0^a}	2½ yr	greenish-black dendritic crystals
NaGe _{3.8} + NaGe _{0.8}	2,2,1	orange-red	no heating	l½ yr	III dark red plates and rods
NaGe0.8	2,1,1	orange	no heating	>1 yr	orange oil
Li ₇ Sn ₃	2,1,1	ruby red	heated 370 ^a	l½ yr	IV reddish black, pseudohexagonal gems

 a Heating was halted after 1-3 weeks when no crystal formation was observed.

^bea = ethylamine.

		Å			deg.				
Products ^a	a	b	C	_α	β	Y	<u>v, Å</u> 3	<u>V/Cp</u>	<u>Notes</u>
I (222Cp-Na ⁺) ₂ Ge ₄ ²⁻	11.431	11.431	11.056	90	90	120	1251	626	_b
II (222Cp-Na ⁺) ₃ - (Ge ₉ ²⁻ Ge ₉ ⁴⁻) ₁₂ ?	23.31	14.71	24.73	90	107.6	90	8083	674	_ ^c
III (221Cp-Na ⁺) ₃ - Ge ₉ ³⁻ ?	14.09	19.23	13.43	96.6	99.9	88.6	3559	593	_d
IV (211Cp-Li ⁺) ₄ Sn ₉ ⁴⁻	15.367	33.914	15.334	90	90.14	90	7992	500	_ ^b
For Comparison									
$(222B-Cp^{e}-K^{+})_{3} - (Ge_{9}^{2-}Ge_{9}^{4-})_{\frac{1}{2}}?$	21.424	24.503	16.589	90	91.32	90	8706	726	Ref. 50
(222Cp-K ⁺) ₆ - Ge ₉ ²⁻ Ge ₉ ⁴⁻ •1.5en	20.037	28.944	14.546	99.36	94.08	87.60	8313	693	Ref. 22
$(222Cp-Na^{+})_{2}Sn_{5}^{2-}$	11.620	11.620	22.160	90	90	120	2591	648	Ref. 19
$(222C_{p-Na}^{+})_{3}Sb_{7}^{3-}$	23.292	13.791	25.355	90	108.56	90	7721	643	Ref. 24
(222Cp-K ⁺) ₃ Sn ₉ ³⁻ •1.5en	15.050	21.983	14.106	99.43	101.61	89.64	4508	751	Ref. 20

Table 8. Unit cells for Na-Ge and Li-Sn reaction products

^aCp = crypt. ^bFrom LATT. ^cFrom Weissenberg and oscillation photographs. ^dFrom indexing after standard selection. ^e2,2,2-benzocrypt.

.

evident strain in the crypt. Therefore, reactions using 2,2,1-crypt and 2,1,1-crypt were also tried, as these are most effective in complexing Na⁺ and Li⁺, respectively. It was hoped that different sized cations could promote the isolation of new or different anions.

Crystals are easily produced by reaction of Na-Ge alloys with 2,2,2-crypt, though in general the solutions produced are relatively dilute and much alloy remains undissolved. NaGe_{0.8} reacts with en alone to give a deep blue (free-electron colored) solution, producing a relatively large amount of hydrogen gas because of the excess sodium present; when 2,2,2-crypt is added the solution initially turns clear, then a light orange color develops after several days. Phase I crystals grow slowly (1-2 weeks) and singly on the walls of the apparatus above the meniscus. Crystals will not form unless alloy residue is present. Once formed, this phase is insoluble in en and in fact is relatively air-stable. Single-crystal X-ray results are examined later.

In general, $NaGe_{1.6}$ and $NaGe_{3.8}$ react identically, giving a redorange solution. Phase II crystals grow rapidly and irreversibly at the meniscus or on the surface of the alloy residue, with many crystals growing from a single point. This intergrowth made it very difficult to separate a single crystal. Oscillation and Weissenberg photographs give the listed unit cell parameters and exhibit $P2_1/n$ space group symmetry. The volume would indicate the general formula $(2,2,2-crypt-Na^+)_3Ge_x^{3-}$ with z=4. Note the similarity of the unit cell parameters to the $(2,2,2-crypt-Na^+)_3Sb_7^{3-}$ values (also $P2_1/n$); the crypt cations are probably in similar positions. Since all polyatomic anions have had an even

number of electrons except for Sn_9^{3-} , a disorder of Ge_9^{4-} and Ge_9^{2-} on the same anion site, giving an average 3- charge, seems the most likely possibility. This disorder apparently exists in the 2,2,2B-crypt-K⁺ salt listed; also, this compound and the known $(2,2,2-\text{crypt-K}^+)_6\text{Ge}_9^{2-}$ - $\text{Ge}_9^{4-}\cdot 2.5\text{en}$ salt (which has independent anion sites) are both similar in color to phase II. However, since the recent discovery of the Sn_9^{3-} anion, one cannot completely rule out an actual 3- germanium cluster; ESR measurements should be made to be certain.

Reactions of these alloys with 2,2,1- and 2,1,1-crypt unfortunately do not readily produce crystals, perhaps because these crypts are viscous liquids so simply removing solvent leaves oils rather than solids. Also, unlike germanium salts with 2,2,2-crypt, the phases which do form are very soluble in en. Many attempts were made to encourage crystal growth: heating up to 50°C, freezing, removing all en, or slowly adding ethylamine (ea). When crystals were produced in some of these reactions, it was only after the solution, with most of the en trapped into another apparatus arm, was allowed to sit for upwards of six months, and crystal growth occurred extremely slowly, requiring three months or more to reach a suitable size. Such long reaction times probably prohibits the isolation of anything but the most stable anions. Also, the solvent tends to polymerize with time, combining with excess crypt to leave crystals coated with a sticky, nonvolatile substance which makes mounting difficult.

Reactions of NaGe_{1.6} or NaGe_{3.8} with 2,2,1-crypt produce unusual results. The solution initially is ruby red in color. After heating a

couple of days, the solution turns to a muddy greenish-brown color. If the heating is stopped, the solution will either return slowly to red or remain greenish-brown depending on whether alloy residue is present or not, and a solution can be cycled between the two colors several times before ultimately remaining greenish-brown. Apparently, an equilibrium exists between different germanium anions, which is greatly influenced by the presence of alloy.

When ethylamine was slowly added to one such greenish-brown solution (NaGe_{1.6} + 2,2,1-crypt), black material precipitated out, and several months later a few light orange, thin plates formed, the color being very reminiscent of phase I. Unfortunately, it proved impossible to isolate these crystals. Another similar reaction (NaGe_{3.8} + 2,2,1crypt) eventually produced many greenish-black dendritic crystals out of a green-brown oil from which most of the solution was removed. These crystals have yet to be investigated.

The reaction of $NaGe_{3.8} + NaGe_{0.8} + 2,2,1$ -crypt used about a 3:1 ratio of $NaGe_{3.8}$ to $NaGe_{0.8}$, but the $NaGe_{0.8}$ alloy was initially reserved in the third arm and added at a much later time, so it may not have contributed much to the reaction. This solution was not heated so it remained red and during the actual crystal growth period (the last four months) the solution was decanted from the alloy. The crystals finally produced (phase III) were again badly intergrown. One crystal was indexed, giving the unit cell parameters listed. These are somewhat similar to the (2,2,2-crypt-K⁺) $_{3}Sn_{9}^{3-}$ ·1.5en values, especially taking into account the volume decrease expected for the 2,2,1-crypt-Na⁺ cation. The

general formula should be $(2,2,1-\text{crypt-Na}^+)_3 \text{Ge}_x^{3-}$ with z=2 and the same conclusions apply here as for phase II. However, phase III crystals are much darker in color than those of phase II and more importantly, they do exhibit a strong ESR signal at room temperature (essentially two g values, $g_{\perp} = 2.043$ and $g_{\parallel} = 1.992$) which is quite similar to that observed for the Sn_9^{3-} compound. Therefore, this phase may indeed contain the analogous paramagnetic Ge_9^{3-} anion, and it should certainly be further investigated.

The reaction of Li₇Sn₃ with 2,1,1-crypt produces an intense red solution. The hexagonally-shaped gems which finally formed grew singly from a reddish-black oil. Single crystal X-ray results are reported later.

Data Collection and Structure Solution

Single crystal X-ray diffraction methods

When a suitable crystal was found, data were collected using Mo K α radiation monochromatized with a graphite crystal either on the fourcircle automated diffractometer designed and built in the Ames Laboratory^{51,52} or on the Syntex P2₁ diffractometer. Low temperatures were achieved by resistively heating liquid nitrogen to produce a reasonably steady stream of cold nitrogen gas flowing onto the capillary.

Standard reflections were monitored, usually every 75 reflections, to check for decay and crystal alignment. Data were corrected for decay based on either a linear or third order polynomial fit as appropriate to the sum of the integrated intensities of these standards. Absorption corrections used the ϕ -scan method (one reflection with χ near 90° was measured every ten degrees in ϕ from 0° to 350°) and the program ABSN.⁵³ Reflections were considered observed if I>3 σ (I) and F>3 σ (F). Precise unit cell parameters were obtained with the program LATT⁵⁴ by a leastsquares fit to the 20 values of reflections tuned at the same temperature on both Friedel-related peaks (±20) to eliminate any instrument or centering errors.

Structure factor calculations and least-squares refinements were carried out using the block diagonal-full matrix program ALLS⁵⁵ and Fourier series calculations were done with the program FOUR.⁵⁶ Anisotropic thermal parameters of the form $\exp[-J_4(B_{11}h^2a^{*2}+B_{22}k^2b^{*2}+B_{33}l^2c^{*2}+$ $2B_{12}hka^*b^*+2B_{13}hla^*c^*+2B_{23}klb^*c^*)]$ were used. The neutral atom scattering factors⁵⁷ included corrections for the real and imaginary parts of anomalous dispersion for the heavier elements (sodium or greater). All drawings of the structures were produced using the program ORTEP,⁵⁸ with thermal ellipsoids drawn at the 50% probability level unless otherwise indicated.

$(2,2,2-crypt-K^{+})_{2}Sn_{2}Bi_{2}^{2-}en$

Preliminary oscillation and Weissenberg photographs indicated monoclinic symmetry with the extinction 0k0, k = 2n+1. Using a crystal of dimensions $0.62 \ge 0.52 \ge 0.13$ mm, a total of 5639 reflections with $20 < 50^{\circ}$ in the two octants HKL and $\overline{\text{HKL}}$ were measured at room temperature on the Ames Laboratory diffractometer (λ =0.71034 Å). The three standard reflections showed a 16% decay during data collection. As the crystal

was both large and relatively thin, an absorption correction was very necessary (μ =68.9 cm⁻¹, transmission coefficients ranged from 0.98 to 0.17). The data were corrected for absorption, decay (by a third-order polynomial), Lorentz and polarization effects to yield 2963 observed and 2944 independent reflections after averaging in P2₁. The final unit cell parameters, obtained by a least-squares fit to the 20 values of 18 reflections with 27[°]<20<35[°], are a = 12.640 (3) Å, b = 20.943 (5) Å, c = 12.353 (3) Å, β = 118.97 (2)[°], and V = 2861 (1) Å³, with Z = 2, d(calc) = 1.80 g/cm³, and fw = 1547. This unit cell and volume suggested the presence in the cell of four 2,2,2-crypt-K⁺ cations, two 2- anions, and probably two solvent molecules.

Analysis of a conventional Patterson map clearly indicated the presence of two four-atom clusters of tetrahedral geometry in the cell related only by a 2_1 screw axis, which restricted the choice of space group to acentric $P2_1$. Even though a mixed Sn-Bi anion was anticipated, the fact that both electron densities and bond distances in the cluster were essentially equal suggested (incorrectly) a model wherein all four atoms were tin. A Sn_4^{2-} anion would not have been unprecedented; there is evidence of its existence in solution by NMR³⁵ and a prediction of a fluxional, nearly tetrahedral geometry.⁵⁹ Therefore, the structure was initially solved as $(2,2,2-crypt-K^+)_2Sn_4^{2-} \cdot en.^{36}$

Successive least-squares refinement and electron density maps located the 54 atoms of the two independent crypts. Refining all atoms with isotropic temperature factors led to $R = 0.142 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. Introduction of anisotropic temperature factors for the tin and potassium atoms reduced R to 0.103. At this point, both electron density and difference maps showed the presence of an ethylenediamine solvent molecule, though it was not well defined. Refinements using several different sets of initial solvent atom positions converged to the same set, and the en molecule was chosen to have a cis-type geometry as this gave the most rational bond distances. Full matrix refinement of all 62 atoms converged at R = 0.094 and $R_w = 0.115 = [\Sigma w (|F_o| - |F_c|)^2 / \Sigma w |F_o|^2]^{\frac{1}{2}}$, where $w = \sigma(F)^{-2}$. A difference map at this point was essentially flat to $\pm 1.1 e/\lambda^3$.

It was at this point that the reaction of the ternary alloy KSnBi produced relatively large quantities of the phase in an essentially pure form, so it was possible to have a bulk analysis by atomic absorption performed. This proved bismuth was present in the crystals, and the approximately 1:1 Sn:Bi mole ratio found could only be rationalized by a diamagnetic $\text{Sn}_2\text{Bi}_2^{2-}$ anion rather than Sn_4^{2-} . Therefore, the anion was concluded to be $\text{Sn}_2\text{Bi}_2^{2-}$, but with completely disordered heavy atoms since the structural results indicated the four positions were substantially equivalent. Using this model, full matrix least-squares refinement of all atoms converged at R = 0.088 and $R_w = 0.107$, which are significantly lower. The data set was reweighted in 40 groups sorted on F_o , as a dependence of $\Sigma w(|F_o|-|F_c|)^2$ on the magnitude of F_o was observed. This did not change the residuals, but it did slightly improve the standard deviations of the atom parameters. The final difference map was flat to $\pm 1.5 \text{ e}/\text{Å}^3$.

Since the structure is in the acentric space group $P2_1$, a refinement of the enantiomorphic image was also performed, but this converged at much higher residuals; R = 0.099 and $R_w = 0.121$. Any attempt to partially or completely order the tin and bismuth atoms also caused a sharp increase in the residuals. There is no reason the Sn and Bi percentages must be exactly 50% at each atom position; in fact, the slight inequality of the bond distances suggests this may not be the case, though it could also arise from the effect of the local environment. However, a refinement in which multiplicities were allowed to vary demonstrated that any deviation from 50:50 Sn:Bi is insignificant. The occupancies found ranged from 0.968 (9) to 1.009 (9) of the ideal 50:50 atoms. The 80 hydrogen atoms in the asymmetric unit have not been located or estimated in the structure factor calculations; these represent 10.7% of the total electron density. The disordered cluster atoms were treated as if they had an atomic number of 66.5, with scattering factor tables which represent the average of those for Sn and Bi.

It is sobering to realize that X-ray crystallography alone is not always sufficient for an analysis of a new phase, even when there are no apparent problems in the structural refinement or results. In the present instance, either Sn_4^{2-} or $\text{Sn}_2\text{Bi}_2^{2-}$ (disordered) produced a very satisfactory solution, with convergence at R = 0.094 and R_w = 0.115 for the former and R = 0.088 and R_w = 0.107 for the latter. Though the latter is of course significantly lower, a large part of this improvement arose from a better fit of the anomalous dispersion correction. Compared with other polyatomic anions and crypt structures, the agreement

factors were better than average for either model. The final difference map, normally used as a concluding test for discrepancies in the final solution, was if anything cleaner for Sn_4^{2-} than for $\operatorname{Sn}_2\operatorname{Bi}_2^{2-}$.

The only crystallographic indication that the former model was incorrect is the fact that the thermal parameters for the crypt atoms (average B = 10.8 Å²) were much larger than those found for the heavier anion atoms (8.2 Å²). On the other hand, the values were relatively close, 8.3 Å² and 8.7 Å², respectively, for the disordered $\text{Sn}_2\text{Bi}_2^{2-}$ model. Since the heavy atoms for the most part determine the structure, the mistake of assigning too small of a scattering factor for the anion atoms in the Sn_4^{2-} model was in effect simply compensated for by a decrease in the overall scale factor and an increase in light atom thermal parameters. Thus, the error in the heavy atoms showed up only in the light atoms. Of course, the problem is moot in this case as a conventional analysis was performed, but sometimes this is not possible when reactions produce very small quantities and multiphase products.

$(2,2,2-\text{crypt-K}^+)_2\text{Pb}_2\text{Sb}_2^{2-} \cdot \text{en}$

Oscillation and Weissenberg photographs confirmed that this phase is isostructural with the $\text{Sn}_2\text{Bi}_2^{2-}$ salt, with monoclinic symmetry and the extinction 0k0, k = 2n+1. It should be noted that because of the very nearly hexagonal lattice parameters for these phases, it is very easy to mistakenly obtain the alternative monoclinic cell $(\vec{a}' = -\vec{a}, \vec{b}' = \vec{a} + \vec{b}, \vec{c}' = -\vec{c})$ when indexing photographs or on the diffractometer; the lattice parameters are almost indistinguishable but the diffraction intensities are of course very different.

Data were collected on a plate-shaped crystal of dimensions 0.56 x 0.45 x 0.16 mm, using the Syntex P2 diffractometer at -80° C (λ =0.71007 Å). A ω -scan was used, with a minimum and maximum scan rate of 5.86 and 29.30 deg/min, respectively. A total of 5458 reflections with 20<50° in the two octants HKL and HKL were collected. Data were corrected for decay (18% based on three standard reflections measured every 60 reflections), absorption (μ =71.0 cm⁻¹, transmission coefficients ranged from 1.00 to 0.35), Lorentz and polarization effects. 3011 reflections were classified as observed, and averaging in the space group P2₁ gave a final data set of 3000 reflections. The monoclinic cell dimensions, obtained from 27 tuned reflections with 25°<20<32°, are a = 12.589 (2) Å, b = 20.735 (2) Å, c = 12.201 (2) Å, β = 118.97 (1)°, and V = 2786.4 (6) Å³, with Z = 2, d(calc) = 1.84 g/cm³ and fw = 1547.

Since the data indicated the crystal was isostructural with $(2,2,2-\text{crypt-K}^+)_2 \text{Sn}_2 \text{Bi}_2^{2-}$ en, refinement was begun by assuming four analogous 50:50 Pb:Sb positions for an approximately tetrahedral $\text{Pb}_2 \text{Sb}_2^{2-}$ anion, yielding R = 0.225. Subsequent electron density maps and least-squares refinement located the potassium and crypt atoms of the two independent cations, which are indeed in similar positions to those in the $\text{Sn}_2 \text{Bi}_2^{2-}$ salt. At this point, since the space group P2₁ is acentric, the inverted image was refined (all x,y,z's were changed to 1-x, 1-y, 1-z's). R dropped significantly from 0.091 to 0.082, so further refinements used these inverted positions. The atoms of the ethylenediamine

solvent molecule could then be located on an electron density map, somewhat better defined than in the ${\rm Sn_2Bi_2}^{2-}$ structure, and with more of a trans-type configuration.

Full matrix least-squares refinement of all 62 atoms, with the K and 50:50 Pb:Sb atoms having anisotropic thermal parameters, yielded R = 0.079 and $R_w = 0.089$. Since the Pb and Sb percentages are not required by symmetry to be exactly 50% at each site, the multiplicities were allowed to vary in several refinements, and indeed the four atom sites differ significantly as shown in Table 9.

	Multiplicity	Final per	Average	
Atom	when Z=66.5	% РЪ	% ЅЪ	Z
РЪЅЪІ	1.023 (12)	65.7	34.3	71.4
PbSb2	0.907 (10)	40.2	59.8	63.5
PbSb3	0.849 (10)	27.0	73.0	59.4
РЪЅЪ4	1.027 (12)	67.1	32.9	71.8

Table 9. Pb and Sb percentages for $Pb_2Sb_2^{2-}$

The four multipliers did not total 4.00 as they ought, but this was not considered significant since these values are dependent on several factors such as the size of the thermal parameters. Therefore, the multipliers were scaled up to total 4.00, and converted to Pb and Sb percentages, giving new average scattering factor tables for each atom. This process was repeated once, because changing the scattering factor tables changes the multiplicities slightly, to give the final percentages and average atomic numbers listed in the table.

The final full matrix refinement, using these percentages with multiplicities set at 1.00, converges at significantly lower residuals, R = 0.072 and $R_w = 0.079$. A final difference map was flat to $\pm 2 e/A^3$ near the heavy atoms and $\pm 1 e/A^3$ elsewhere. The 80 independent hydrogen were not located, representing 10.7% of the total electron density.

(2,2,2-crypt-K⁺)₂Sb₄²⁻

A strongly diffracting crystal of dimensions 0.62 x 0.30 x 0.17 mm was examined on the Ames Laboratory diffractometer (λ =0.71034 Å). A total of 5371 reflections were collected at room temperature for the four octants HKL, HKL, HKL and HKL of the indicated triclinic cell with 20<50°. Three standard reflections measured every 75 reflections showed only a 7% decay in intensity during data collection (in sharp contrast to the isostructural Bi₄²⁻ salt¹² which decayed so rapidly at room temperature that two crystals were necessary to obtain a complete data set). The data were corrected for decay (by a linear fit), absorption (μ =22.8 cm⁻¹, transmission coefficients ranged from 0.99 to 0.75), Lorentz and polarization effects, giving 4591 observed reflections. After averaging in PI (R_{ave} = 0.035), the final data set contained 3909 independent reflections.

Precise lattice dimensions of a = 11.555 (1) Å, b = 11.795 Å, c = 11.067 Å, α = 97.60 (1)^o, β = 97.80 (1)^o, γ = 61.24 (1)^o, and V = 1306.1 Å³ with Z = 1, d(calc) = 1.68 g/cm³ and fw = 1318 were obtained using the 20 values of 24 reflections in the range 36^o<20<42^o.

Since the unit cell parameters indicated the compound is isostructural with the ${\rm Bi}_{\rm A}^{2-}$ salt, the least-squares refinement was begun by using the Bi atom coordinates for the two Sb positions, which immediately gave an agreement factor R = 0.305. Further full matrix least-squares refinement and electron density maps located all the crypt atoms (in essentially the same positions as in the Bi_l²⁻ structure) giving R = 0.080</sub> when all 29 atoms were allowed to have anisotropic thermal parameters. At this point, both electron density and difference maps indicated a disorder in the crypt carbons α and β to the nitrogen nearest the Sb₄²⁻ anion, similar to that found in the Bi_4^{2-} structure. In particular, Cl, C2, Cll, Cl2 and C22 were resolvable into pairs (a and b), with separations of 0.7 to 1.0 Å. The 'thermal' ellipsoid for C21 is also considerably elongated but not enough to make resolution feasible. With isotropic thermal parameters and a multiplicity of 0.50 for these carbon atoms (from which they do not vary significantly) the residuals were essentially unchanged at R = 0.081 and $R_{tr} = 0.113$. This disordered model is clearly preferred in terms of chemical sensibility; otherwise the N-C and C-C bond distances would be much too short. The 72 hydrogen atoms have not been located or estimated in the structure factor calculations, representing 11.0% of the total electron density. The final difference map was essentially flat to $\pm 2 \text{ e/A}^3$ near the antimony atoms and less than $\pm 1 e/A^3$ in the rest of the map.

$(2, 2, 2-crypt-K^+)_{3}Sb_{7}^{3-\cdot}2en$

Data were collected using a crystal of dimensions 0.42 x 0.13 x 0.04 mm at low temperature (-80°C) on the Ames Laboratory diffractometer. The crystal was not a strong diffractor but did give very sharp peaks. A total of 12,049 reflections with $20<44^{\circ}$ in the four octants HKL, HKL, HKL, and HKL were measured. The data were corrected for decay (according to a 22% linear decrease in the integrated intensities of three standard reflections), absorption (μ =23.8 cm⁻¹, transmission coefficients ranged from 0.99 to 0.73), Lorentz and polarization effects, yielding 8276 observed reflections. The final data set contained 7281 independent reflections after averaging in the space group PI ($R_{ave} = 0.033$).

Precise unit cell dimensions are a = 14.589 (2) Å, b = 21.753 (3) Å, c = 13.857 (2) Å, α = 92.46 (1)^o, β = 99.63 (2)^o, γ = 89.12 (2)^o, and V = 4331 (1) Å³ with Z = 2, d(calc) = 1.70 g/cm³, and fw = 2219, obtained as before from 24 reflections with 25^o<20<34^o.

Analysis of a conventional Patterson map clearly showed a seven-atom cluster with bond distances and configuration indicative of Sb_7^{3-} (as in the known crypt-Na⁺ salt²⁴). Least-squares refinement of the seven Sb and three K positions obtained from the Patterson map immediately yielded R = 0.223. The crypt atoms and two independent en solvent molecules were located on an electron density map, and subsequent refinement of all 96 atoms with isotropic thermal parameters gave R = 0.104 and R_w = 0.131. Final block diagonal least-squares refinement allowing the Sb, K, O and crypt N atoms to have anisotropic thermal parameters converged at R = 0.075 and R_w = 0.093. The final difference map was flat to $\pm 2 \text{ e/A}^3$ near

the antimony atoms and less than $\pm 1 \text{ e/A}^3$ in the rest of the map. The 124 hydrogen atoms have not been located or estimated in the structure factor calculations; these represent 11.3% of the total electron density.

$(2, 2, 2-crypt-K^{+})_{3}Sn_{9}^{3-} \cdot 1.5en$

Preliminary oscillation and Weissenberg photographs of this phase indicated a unit cell nearly identical with that for $(2,2,2-\text{crypt-K}^+)_3 - (\text{TlSn}_8^{3-}\text{TlSn}_9^{3-})_1 \cdot \text{en},^{28}$ except that the volume was about 100 Å³ smaller and some intensity differences were observed. The TlSn₈³⁻/TlSn₉³⁻ salt contains the two anions disordered 50:50 on a single anion site with seven coinciding atoms. By analogy, this phase was expected to contain the Sn₉⁴⁻ and Sn₁₀²⁻ anions disordered on the same site (the latter ion is so far unknown).

Data were collected at -60° C on the Ames Laboratory diffractometer (λ =0.70964 Å) using a crystal of dimensions 0.40 x 0.39 x 0.38 mm. A total of 13,229 reflections with $20 < 45^{\circ}$ in four octants (HKL, HKL, HKL, and HKL) were measured. Three standard reflections measured every 75 reflections showed a linear intensity loss totalling 66% during data collection. A normal decay correction based on these standards was not completely satisfactory (leading to $R_{ave} = 0.048$ with 31 reflections eliminated) because the decay was also very dependent on 20; low angle reflections lost very little intensity while higher angle reflections decayed more than the 66% rate. (This is normally the case, but it only becomes significant when the decay is so large.) So, a better decay correction was made using a function of both 20 (second order polynomial)

and reflection number (linear), determined from data collected more than once either as identical or Friedel-related pairs (hk0, h0l and 0kl reflections).

The data were also corrected for absorption (μ =27.0 cm⁻¹, transmission coefficients ranged from 1.00 to 0.85), Lorentz and polarization effects, yielding 10,472 observed reflections. Averaging in PI gave 9293 independent reflections (R = 0.034, with four reflections eliminated at the 6 σ cutoff). Precise triclinic unit cell dimensions, obtained by using the 20 values of 26 reflections in the range 30^o<20<35^o, are a = 15.002 (1) Å, b = 21.794 (2) Å, c = 14.060 (1) Å, α = 99.770 (10)^o, β = 101.595 (9)^o, γ = 89.694 (10)^o, and V = 4435.9 (7) Å³, with Z = 2, d(calc) = 1.80 g/cm³, and fw = 2405.

The compound was assumed to be nearly isostructural with the $TLSn_8^{3-}/TLSn_9^{3-}$ salt, so refinement was begun using the eight average tin-only positions from that structure, giving an initial agreement factor of about 0.40. However, the electron density map showed only a ninth tin atom (at the TL position of $TLSn_8^{3-}$), with absolutely no sign of a tenth cluster atom at what would be the TL position of the $TLSn_9^{3-}$ anion; hence, this rules out the Sn_9^{4-}/Sn_{10}^{2-} model.

The three independent crypts and one en solvent molecule were located by successive least-squares refinement and electron density maps; their positions are essentially the same as in the thallium-tin salt. A difference map at this point showed what appeared to be an additional en molecule sitting on the center of symmetry at 0,0,1/2. The final difference map for the thallium-tin structure also had positive electron density at this position, though somewhat weaker. In that structure, this en would be fairly close to the TL of the $TLSn_9^{3-}$ anion (~ 3.8 Å), so perhaps it is present only when the anion is $TLSn_8^{3-}$.

In this structure, neither en molecule is well defined but this is typical. Final block diagonal refinement of all 96 nonhydrogen atoms, with anisotropic thermal parameters for the nine tin and three potassium atoms, converged at R = 0.085 and $R_w = 0.125$. A final difference map was flat to less than $\pm 2.5 \text{ e/A}^3$ near the tin atoms (within about 1.0 Å) and $\pm 1.0 \text{ e/A}^3$ elsewhere. The 120 independent hydrogen atoms have not been located or estimated in the structure factor calculations; these represent 10.2% of the total electron density.

(2,2,2-crypt-Na⁺)₂Ge₄²⁻ - a partial structure solution

Data for this compound were actually measured three times, but the best data were obtained using a large crystal of dimensions 0.62 x 0.62 x 0.20 mm on the Ames Laboratory diffractometer at room temperature. 5176 reflections in four octants (HKL, HKL, HKL and HKL) with $20 < 50^{\circ}$ were collected (λ =0.71002). Though the absorption coefficient is small, a correction was nevertheless very necessary (μ =26.0 cm⁻¹, transmission coefficients ranged from 0.99 to 0.44). Decay in the beam was negligible. After corrections for absorption, Lorentz and polarization effects, 3549 reflections were considered observed, and averaging in P3 gave 1124 independent reflections ($R_{ave} = 0.034$).

The trigonal unit cell parameters are a = 11.431 (2) Å, c = 11.056 (2) Å, and V = 1251.1 (4) Å³ (Z = 1, fw = 1089, d(calc) = 1.45 g/cm³),

using 20 reflections with $30^{\circ} < 20 < 40^{\circ}$. Since the structure solved poorly, long exposure oscillation and Weissenberg photographs were examined; there is no indication of any larger cell or alternate symmetry.

The Patterson map was unusual in that the strongest peak represented a 2.0 Å distance, much too short for a Ge-Ge bond. The only model which seems to fit the Patterson is two disordered Ge_4 tetrahedra each at 50% occupancy, with one the inverted image of the other (an inversion center occurs at the center of the tetrahedron). The strong Patterson peak would then represent a Ge-Ge vector between two different disordered Ge_4 clusters rather than an actual chemical bond.

With this germanium cluster centered at 0,0,0 and the two inversion related crypt cations in the cell located on the three-fold axes at 1/3, 2/3,z and 2/3,1/3,-z, a $\text{Ge}_4^{2^-}$ anion is implied. Refinement of this model with all 13 independent atoms considered anisotropic yielded poor agreement factors at R = 0.170 and R_w = 0.248. There seems to be no obvious reason why the residuals should be so high. All attempts to refine the structure in lower symmetry space groups were not successful. Though all the thermal parameters are reasonably small and spherical, those for the germanium atoms have noticeably larger values than do the crypt atoms ($11 \text{ Å}^2 \text{ vs } \sqrt{5} \text{ Å}^2$ for isotropic B's), which is sometimes symptomatic of assigning incorrect scattering power to heavy atoms, but it may simply be due to the disorder. If the multipliers for the germanium atoms are allowed to vary, both these and the thermal parameters increase.

A detailed final difference map was very clean except in the vicinity of the germaniums, where peaks up to 2 e/A^3 were seen; these are not necessarily ignorable since the 50% occupancy Ge atoms only show peak heights of $\sim 14 \text{ e/A}^3$ on a normal map. It appears the Ge atoms simply are poorly ordered on their sites, with tetrahedrally shaped electron densities which cannot be completely accounted for by the standard ellipsoidal 'thermal' parameters; i.e., the left over electron density on the difference map occurs in four areas around each Ge atom, between it and each of the three adjacent Ge atoms (of the alternative cluster) and about 0.8 Å out from each Ge on a line from the center of symmetry. If partial Ge atoms are placed at such positions, it is possible to decrease the residuals to reasonable values at R = 0.122 and R_w = 0.178, but such a complicated solution is not very satisfactory.

(2,1,1-crypt-Li⁺), Sno⁴⁻ - another problem structure

Crystals of this phase diffract well and give sharp spots, but the intensity drops quite rapidly at higher 20 values. Oscillation and Weissenberg photographs indicated a unit cell of approximate dimensions a = 15.4 Å, b = 33.9 Å and c = 15.4 Å, assuming angles near 90° . The oscillation axis showed no mirror symmetry, but the zero-level Weissenberg exhibited mirror symmetry with odd reflections extinct along both axes (b* and c*) and very nearly a k = 4n condition for the 33.9 Å axis. From this evidence two space groups were possible, monoclinic $P2_1/n$ and tetragonal $P4_2/n$; the former proved to be the correct choice.

A crystal of dimensions 0.36 x 0.43 x 0.20 mm was used for data collection at approximately -100° C on the Syntex diffractometer $(\lambda=0.71007 \text{ Å})$. Precise monoclinic unit cell parameters of a = 15.367 (3) Å, b = 33.914 (3) Å, c = 15.334 (4) Å, β = 90.14 (1)^o and V = 7992 (3) Å³ (Z = 4, d(calc) = 1.87 g/cm³, and fw = 2249) were obtained using 24 reflections with 19^o<20<30^o. A total of 10,058 reflections with 20<43^o in the two octants HKL and HKL were measured, of which 244 were symmetry extinct (0k0, k=2n+1 and h0ℓ, h+ℓ=2n+1). The maximum and minimum scan rates were 29.3 and 3.5 deg/min, respectively. One standard reflection monitored every 50 reflections lost 43% of its original intensity. Data were corrected for decay, absorption $(\mu=28.4 \text{ cm}^{-1}$, transmission coefficients ranged from 0.98 to 0.65), Lorentz and polarization effects, yielding 5248 observed reflections.

The data averaged very poorly in $P2_1/n$; with a 60 cutoff, $R_{ave} = 0.092$ and 54 reflections were eliminated, many of which were very strong reflections. The problem is not in the space group choice; rather, it is that the last third or so of the data was simply not compatible with the first two thirds, perhaps due to inconsistent decay, crystal misalignment, temperature changes or some other crystal change for which no account has been made. For instance, the 002 reflections were measured once at the beginning and once at the end of data collection, and these averaged to $R_{ave} = 0.13$. Nothing can be done to correct this problem, but to avoid having so many strong reflections eliminated, the reflections in the last third of the data which would have been averaged were deleted so the final data set contained 4820 independent reflections.

MULTAN⁶⁰ indicated the presence of a nine-atom tin cluster, for which least-squares refinement yielded R = 0.31. Subsequent blockdiagonal refinements and electron density maps located all 84 atoms of the four independent crypt cations, including the lithium atoms. With isotropic thermal parameters for all atoms R equaled 0.239, while allowing the tin atoms to have anisotropic thermal parameters gave R = 0.142 and $R_{\rm rr} = 0.171$.

The structure therefore appears to be $(2,1,1-\text{crypt-Li}^+)_4 \text{Sn}_9^{4-}$, but the cluster does not have the normal C_{4v} configuration for Sn_9^{4-} .²¹ Both bond distances and dihedral angles indicate the cluster is midway between a C_{4v} and a D_{3h} type configuration. Also, six of the nine tin atoms have greatly elongated thermal ellipsoids; these six atoms can be resolved into two components A and B, giving an approximately C_{4v} and D_{3h} cluster, respectively. With isotropic thermal parameters for these resolved atoms, the residuals actually increase to R = 0.151 and $R_w = 0.182$. The multiplicities were allowed to vary from 0.50, and showed a trend to about 60% A (C_{4v}) and 40% B (D_{3h}), but the agreement factors did not change. With the 50:50 model, the residuals dropped to R = 0.131 and $R_w = 0.159$ when the resolved tin atoms were allowed to have anisotropic thermal parameters. However, while the thermal ellipsoids for cluster A (C_{4v}) remained reasonably well-behaved, several atoms in cluster B (D_{3h}) became quite elongated again.

Unfortunately, this disorder and the poor quality of the data limit the success of this structure solution. The large unit cell and the very long b axis would tend to hinder collection of a good data set, and it is not known if the disorder observed here is inherent in all the crystals. The ${\rm Sn_9}^{4-}$ anion is well known in the C_{4v} configuration, so this structure is not very important unless the presence of the D_{3h}-type configuration is provable.

RESULTS AND DISCUSSION

The $\text{Sn}_2\text{Bi}_2^{2-}$ and $\text{Pb}_2\text{Sb}_2^{2-}$ Structures

The final positional and thermal parameters for $(2,2,2-\text{crypt-K}^+)_2 - \text{Sn}_2\text{Bi}_2^{2-} \cdot \text{en}$ and $(2,2,2-\text{crypt-K}^+)_2\text{Pb}_2\text{Sb}_2^{2-} \cdot \text{en}$ are listed in Table 10 and 11, respectively. All bond distances and angles for the $\text{Sn}_2\text{Bi}_2^{2-}$ and $\text{Pb}_2\text{Sb}_2^{2-}$ anions are given later in Table 12. Remaining distances and angles in the crypt cations and en molecules appear in Appendix A. Observed and calculated structure factors for the $\text{Sn}_2\text{Bi}_2^{2-}$ salt have been deposited in reference 26; those for the $\text{Pb}_2\text{Sb}_2^{2-}$ compound are listed in Appendix B.

As previously noted, these two compounds are isostructural, though the $Pb_2Sb_2^{2-}$ salt occurs here in the inverted image as is evident in Figure 1 and 2. The general improvement in thermal parameters due to the low temperature data collection for $Pb_2Sb_2^{2-}$ is also obvious. The unit cell in both cases contains two anions, four potassium-crypt cations and two en molecules, with the disposition of these species exhibiting a marked pseudohexagonal character. Of course, the a and c axes are nearly equal and β is very close to 120° , but also the anion and two crypt cations each have approximate three-fold axes and are located at translations in x and z of about 1/3,2/3 and 2/3,1/3 from the anion axis. Since the anion is positioned off the b axis, and 2_1 screw symmetry creates a zig-zag channel containing the anions, with an en molecule filling the empty space directly above each anion. However, there is no significant interaction between the anions and the solvent molecules. In the

Atom	X	y	2	B11	B22	B33	B12	B13	B23
a SnB11	0. 0413(2)	0. 0	0.8771(2)	8.1(1)	15.2(3)	7.0(1)	0.3(2)	1.30(9)	-3. 8(2)
SnBi2	0. 1202(2)	0.0015(3)	0. 1453(2)	10.3(1)	9.8(2)	8.1(1)	-0.7(2)	6.0(1)	-0.5(1)
SnBi3	0.3001(2)	0.0035(3)	0. 0574(2)	6. 24 (8)	8.8(1)	7.67(9)	1.3(1)	3. 28(7)	1.1(1)
SnB14	0.1469(2)	0. 1175(3)	0.0226(2)	8.5(1)	7.9(1)	7.3(1)	1.6(1)	3.31(9)	0.7(1)
K1	0,8351(6)	0. 2057(5)	0. 3704(6)	5.6(3)	7.5(5)	4, 9(3)	0.4(4)	2.6(3)	0.5(4)
K2	0. 5030(6)	0. 1823(5)	0. 6949(6)	5, 0(3)	6.9(5)	4.7(3)	-0.3(3)	2.2(3)	-0.5(3)
Atom	x	- <u></u>	Z	B	Atom	x	y	Z	B
N10	0.808(3)	0.064(2)	0. 375(3)	7.8(7)	C42	0. 323 (4)	0.070(3)	0. 742(4)	8.7(11)
C11	0.888(4)	0.033(3)	0.332(5)	10. 3(13)	043	0.305(2)	0.129(1)	0.703(2)	7.1(6)
C12	0.017(4)	0.066(3)	0.384(4)	8.3(10)	C44	0. 241 (4)	0. 172(3)	0.754(4)	8.8(11)
013	0.998(2)	0.129(1)	0.347(2)	7.5(6)	C45	0. 226(3)	0. 237(2)	0.711(4)	7.2(9)
C14	0. 110(3)	0.148(2)	0.366(4)	7.4(9)	046	0. 345(3)	0. 261 (2)	0.744(3)	9.0(7)
C15	0.098(3)	0.218(2)	0.315(3)	6.4(8)	C47	0.330(5)	0.325(3)	0. 703(5)	10. 6(14)
016	0.047(2)	0.259(1)	0.374(2)	6.6(5)	C48	0. 452(6)	0. 355(3)	0. 725(6)	13. 3(17)
C17	0.036(4)	0.323(2)	0.336(4)	7.9(10)	N49	0. 511(3)	0.320(2)	0.668(3)	8.7(9)
C18	0.980(4)	0.364(3)	0.397(4)	9.8(12)	C51	0.567(4)	0.021(3)	0.844(4)	9.5(11)
N19	0. 857(2)	0.348(2)	0.365(3)	6.7(7)	C32	0. 697 (3)	0. 055(2)	0.872(4)	8.0(10)
C21	0.685(4)	0.044(3)	0. 295(5)	10. 2(13)	053	0. 690(2)	0.121(1)	0.911(2)	6.6(5)
C22	0. 627(5)	0.086(3)	0.168(5)	10.7(14)	C54	0.807(3)	0. 151(2)	0.967(3)	6.1(8)
023	0, 622(2)	0.148(2)	0. 197(2)	7.5(6)	C 55	0. 792(4)	0. 217(3)	0.979(4)	8.4(10)
C24	0. 540(4)	0. 183(2)	0.089(4)	7.9(9)	056	0. 723(2)	0.245(1)	0.852(2)	7.3(6)

Table 10. Positional and thermal parameters for (2,2,2-crypt-K) Sn Bi .en 2 2 2

a 50:50 distribution of Sn and Bi.

b The first digit identifies the chain (1, 2, and 3, crypt 1; 4, 5, and 6, crypt 2), and the second indicates the position along the chain.

Table 10. Continued

Atom	x	y	. 2	B .	Atom	x	y	Z	B
C25	0. 536(3)	0.248(2)	0.113(3)	6.9(8)	C57	0.718(4)	0.314(2)	0.850(4)	7.6(10)
026	0. 655(2)	0.279(1)	0. 170(2)	7.2(6)	C58	0.645(4)	0.338(3)	0.733(5)	10.2(12)
C27	0.647(3)	0.342(2)	0.288(3)	6.9(8)	C61	0. 532(5)	0.006(4)	0.634(5)	11. 4(13)
C28	0.776(4)	0.369(3)	0.238(4)	7.0(11)	C65	0. 452(4)	0.037(2)	0. 495(4)	8.4(10)
C31	0. 839(4)	0.042(3)	0.496(5)	10.3(14)	063	0. 490(2)	0.103(1)	0. 502(2)	6. 3(5)
C3 2	0.804(4)	0.087(3)	0. 575(4)	8.8(11)	C64	0. 425(3)	0.136(2)	0. 374(3)	6.1(8)
033	0.848(3)	0.146(2)	0. 577(3)	9.3(8)	C65	0.466(4)	0. 196(2)	0.386(4)	8.1(10)
C34	0.831(4)	0. 187(2)	0.661(4)	8.2(10)	066	0. 449(2)	0.236(1)	0.463(2)	7.2(6)
C35	0. 893(3)	0.243(2)	0.684(4)	7.4(9)	C67	0. 485(5)	0.296(3)	0. 455(5)	10.6(15)
036	0. 839(2)	0. 279(2)	0.566(2)	7.3(6)	C68	0.451(5)	0.338(3)	0. 532(5)	11.4(14)
C37	0.890(4)	0.339(2)	0. 582(4)	7.9(10)	NEN1	0. 209(15)	0.363(10)	0.103(15)	39. (8)
C38	0.826(4)	0.377(3)	0. 457(4)	9.0(11)	CEN1	0.217(14)	0.306(7)	0. 116(15)	25. (6)
N40	0. 494(3)	0.042(2)	0.714(3)	8.1(8)	CEN2	0.169(12)	0.333(9)	0. 950(13)	26. (5)
C41	0.365(4)	0.025(3)	0. 681 (4)	10.2(13)	NEN2	0. 187(10)	0.392(7)	0.918(11)	29. (4)

z B11 **B2**2 B33 B12 B13 B23 x Atom ų 0.9664(2) 1.0000 0.1276(2) 4.71(8) 12.12(18) 4.59(8) 1.09(13) 0.01(7) -3.13(13) PbSb1 -0.35(12) 4.05(8) PbSb2 0.8892(2) 0.9972(2) 0.8592(2) 6.08(10) 6.16(13) 5.59(9) -0.20(13) 3.32(7) 5.61(12) 4.50(9) 1.04(10) 1.84(7) PbSb3 0.7082(2) 0.9951(2)0.9434(2) 0.78(12)2.08(7) PbSb4 0.8588(2) 0.8790(2) 0.9791(2) 4.76(8) 5.30(10) 4.90(8) 1.49(9) 1.00(9) K1 0.1676(6) 0.7931(4) 0.6294(6) 2.7(3) 4.5(4)2.4(3) 0.3(3) 1.1(2) 0.3(3) K2 0.4973(6) 0.8157(4) 0.3025(6) 2.6(3) 3.8(4) 2.7(3) 0.2(3) 1.0(2) 0.2(3) В в Atom x Z Atom x y. z y. b 0.961(2) 0. 506(4) N10 0 201(2) 0.937(2) 0.630(3) 4. 3(7) C31 0.171(4) 6.8(11) 0.209(3)0.910(2) 0.437(4)5.0(8) 0.006(2) 0.875(1) 0.656(2) 3.9(4) C32 013 0.812(2) 016 0 955(2) 0.741(1) 0.627(2) 3.6(4) C34 0.173(3)0.334(3)3.5(7) 0.751(2) 3.9(7) N19 0.137(2) 0.650(1)0.631(2) 3.5(5) C35 0.109(3)0.315(3) 023 0.385(2) 3.7(5) C37 0.108(3)0.654(2) 0.411(3) 4.9(8) 0.847(1) 0.806(2) 026 0.348(2) 0.834(2) 2.5(4) C38 0.163(3) 0.617(2) 0.540(3)3.6(7) 0.717(1)0.973(2) 0.316(3) 4.4(8) 0.639(3) 033 0.157(2)0.852(1)0.418(2) 4.7(5) C41 036 0.160(2)0.715(1) 0.429(2) 3.5(4) C42 0.687(3)0.931(2)0.252(3)4.1(7) 0.822(2) 4.3(8) N40 0.759(3)0.242(3)0.513(3) 0.957(1)0.284(3)4.5(7) C44 043 C45 0.776(3) 0.756(2) 0.289(3)5.0(8) 0 700(2) 0.865(1) 0.292(2) 3.5(4) 0.660(3) 0.670(2) 0.288(4)5.1(9) 046 0.651(2) 0.732(1) 0.253(2) 3.8(5) C47 N49 0.538(4) 0.640(2) 0.269(4) 6.7(11) 0.485(3) 0. 675(2) 0.323(3) 5.2(7) C48 053 0.313(2) 0.879(1) 0.087(2)3.3(4) C51 0.432(3) 0.980(2) 0.156(3) 4.9(8) 5.0(8) 0.946(2) 0.102(3) 056 0.278(2) 0.754(1) 0.142(2) 3.6(4) C52 0.304(3)

Table 11. Positional and thermal parameters for (2, 2, 2-crypt-K) Pb Sb .en

a Pb and Sb percentages as listed in Table 9. PbSbl through PbSb4 have average atomic numbers of 71.4, 63.5, 59.4 and 71.8 respectively.

The first digit identifies the chain (1, 2, and 3, crypt 1; 4, 5, and 6, crypt 2), and the second, the position along the chain.

Table 11. Continued

.

.

Atom	x	y	Z	B	Atom	x	y	Z	В
063	0. 516(2)	0.896(1)	0.502(2)	3.8(5)	C54	0. 197(3)	0.850(2)	0. 031 (3)	3.8(7)
066	0. 551 (2)	0.764(1)	0.541(2)	4.3(5)	C55	0. 208(3)	0. 781 (2)	0.017(3)	4.4(8)
C11	0. 127(3)	0.968(2)	0. 672(3)	5.3(9)	C57	0.280(3)	0. 683(2)	0. 135(3)	4.1(7)
C12	0 996(3)	0.940(2)	0.618(4)	5.5(9)	C 58	0.355(3)	0. 657(2)	0. 274(3)	5.4(9)
C14	0.885(3)	0.849(2)	0.627(3)	3.8(7)	C61	0. 480(3)	0.989(2)	0.365(3)	4.9(7)
C15	0.908(3)	0.786(2)	0.687(3)	3.9(7)	C62	0. 545(3)	0.964(2)	0. 505(3)	4.9(9)
C17	0 958(3)	0.675(2)	0.662(3)	4.8(8)	C64	0.580(3)	0.867(2)	0.632(3)	4.6(8)
C18	0.007(3)	0.634(2)	0. 594(3)	3.3(6)	C65	0. 531 (3)	0.802(2)	0. 623(4)	5.1(9)
C21	0. 327(4)	0.955(2)	0.712(4)	6.6(11)	C67	0. 513(4)	0. 697 (2)	0. 540(4)	6. 5(11)
C22	0.386(4)	0. 909(2)	0.834(4)	5.4(9)	C68	0. 544(3)	0.656(2)	0.466(3)	4. 7(8)
C24	0. 463(3)	0.810(2)	0.916(3)	4.1(7)	NEN1	0.216(7)	0.117(4)	0.160(7)	18. (3)
C25	0.469(3)	0. 743(2)	0.889(3)	3.7(7)	CEN2	0.169(9)	0.179(6)	0.070(10)	20. (4)
C27	0.348(3)	0.652(2)	0.818(3)	3.1(6)	CEN3	0.201(9)	0.170(6)	-0.010(10)	19. (3)
C28	0.217(2)	0.624(2)	0.758(3)	3.0(6)	NEN4	0.160(4)	0. 118(3)	0. 906(4)	11. (1)

Figure 1. Approximate [101] view of the unit cell of $(2,2,2-crypt-K^+)_2 - Sn_2Bi_2^{2-} \cdot en$. For clarity, the anions and en molecules along the (0,y,0) and (1,y,1) axes are not included. Thermal ellipsoids are drawn at the 30% probability level

Figure 2. Approximate [101] view of the unit cell of $(2,2,2-crypt-K^+)_2 - Pb_2Sb_2^{2-} \cdot en$. (Note the origin position relative to Figure 1.) Thermal ellipsoids are drawn at the 30% probability level

 ${\rm Sn_2Bi_2}^{2-}$ structure, the shortest contact is for SnBi4-CEN1 at 4.1 (2) Å, and there are perhaps shorter distances to crypt carbon atoms such as SnBi2-C12 at 3.99 (4) Å. In the Pb₂Sb₂²⁻ structure the shortest distance is PbSb1-NEN1 at 3.87 (8) Å, but this is not significantly shorter than distances to crypt carbons such as PbSb2-C12 at 3.96 (4) Å, where hydrogen may also be important. The 2,2,2-crypt-K⁺ cations in both structures have conformations comparable to those in other crypt structures, with the potassium atoms more or less centrally located along the N-N axes.

The interesting features of the two structures are the ditindibismuthide(2-) and dileaddiantimonide(2-) anions, shown in Figure 3. Since the atoms within $\text{Sn}_2\text{Bi}_2^{2-}$ are disordered 50:50, the observed cluster geometry represents merely a mean configuration; each bond distance should be an average of one Sn-Sn, one Bi-Bi and four Sn-Bi distances. The cluster found is substantially tetrahedral with bond distances ranging from 2.934 (3) to 2.971 (6) Å, with an average of 2.957 Å, and bond angles which vary from 59.3 (4)° to 60.6 (1)° (see Table 12). The SnBil-SnBi3 distance of 2.934 (3) Å is significantly shorter than the other five, possibly implying greater than average Sn-Sn character. In spite of the positional disorder, the thermal parameters of the atoms are quite normal for this type of structure except for SnBil which is elongated in a direction approximately tangent to the sphere of the cluster; presumably this arises from poor overlap of the positionally disordered atoms on this site.

Figure 3. The $\text{Sn}_2\text{Bi}_2^{2-}$ (left) and $\text{Pb}_2\text{Sb}_2^{2-}$ (right) anions, with <u>b</u> approximately vertical

Distances, Å					
Atoms	Sn ₂ ^{Bi} 2 ²⁻	Pb2Sb2 ²⁻			
1 - 2	2.961 (3)	2.931 (3)			
1 - 3	2.934 (3)	2.924 (2)			
1 - 4	2.956 (5)	3.006 (4)			
2 – 3	2.956 (3)	2.918 (3)			
2 - 4	2.966 (6)	2.974 (5)			
3 - 4	2.971 (6)	2.963 (5)			

Table 12. Distances and angles in $Sn_2Bi_2^{2-}$ and $Pb_2Sb_2^{2-}$

Angles, deg					
Atoms	Sn ₂ Bi ₂ ²⁻	Pb2Sb22-			
2 - 1 - 3 2 - 1 - 4 3 - 1 - 4 1 - 2 - 3 1 - 2 - 4 3 - 2 - 4 1 - 3 - 2 1 - 3 - 4	60.20 (7) 60.17 (12) 60.58 (12) 59.45 (7) 59.84 (9) 60.22 (13) 60.35 (7) 60.08 (8)	$59.79 (6) \\ 60.10 (10) \\ 59.95 (10) \\ 59.98 (6) \\ 61.20 (7) \\ 60.39 (11) \\ 60.23 (6) \\ 61.41 (7)$			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	60.06 (13) 59.99 (12) 59.34 (12) 59.72 (13)	60.74 (11) 58.70 (9) 58.65 (9) 58.88 (10)			

The average bond length of 2.957 Å for $\operatorname{Sn_2Bi}_2^{2-}$ compares well with what one would expect for a Sn-Bi bond. The only known bismuth polyanion is Bi_4^{2-12} with an average distance of 2.938 Å, but since the Bi-Bi bond order is 1.25 this is not directly comparable. The cationic species 5+61Bi_o has an average bond length of 3.14 Å but all atoms exhibit higher connectivity. A reasonable value of 2.972 Å for a Bi-Bi single bond can be obtained by estimating the average bond length for a hypothetical "Bi₇³⁻" anion based on the known values for Bi_4^{2-} , Sb_4^{2-} (2.750 Å), ²³ and Sb₇³⁻ (2.782 Å). ²⁴ For a Sn-Sn bond, several polytin reference anions are known, including Sn_0^{4-} with an average bond length of 3.02 $Å^{21}$ and "Sn⁴⁻" (isolated tetrahedra in the intermetallic phase KSn) with a distance of 2.98 Å. ³⁹ The average distance of 2.942 Å for Sn_5 is probably the better estimate as this anion is more similar to ${\rm Sn_2Bi_2}^{2-}$. This would imply that the Bi-Bi and Sn-Sn bond distances are nearly identical, which is in part borne out by the observed positional disorder, but these values are somewhat deceptive. Using only the average distance in the base of the "Bi $_7^{3-}$ " anion (3.053 Å) and only the axial-equatorial distance in Sn_5^{2-} (2.866 Å) probably gives the best estimates for Bi-Bi and Sn-Sn bonds in the $Sn_2Bi_2^{2-}$ cluster, as these distances involve constrained triply-bonded atoms. In either case, the Sn-Bi bond is estimated at 2.96 Å, which agrees very well with observation.

It is interesting that the $Pb_2Sb_2^{2-}$ anion does show some preference in orientation, and the cluster correspondingly exhibits a wider range of bond distances and angles. PbSbl-PbSb4 is significantly longer than the others, as expected for the bond length with the most Pb-Pb character
according to occupation refinement. The bond with the most Sb-Sb character (PbSb2-PbSb3) is the shortest, but not significantly. This $Pb_2Sb_2^{2-}$ anion does remarkably resemble $Sn_2Bi_2^{2-}$; both anions have longer distances in general to atom 4 and a very similar elongation of the thermal ellipsoid of atom 1. It is probable that these effects arise from the crystal packing of the crypt cations.

Bond lengths for Pb-Pb and Sb-Sb in this cluster can be estimated from the Pb_5^{2-19} and Sb_7^{3-24} anions as before. Using the average of all distances, the values are 3.081 Å and 2.782 Å, while using the axialequatorial lengths from Pb_5^{2-} and the basal distances from Sb_7^{3-} gives 3.002 Å and 2.858 Å, respectively. Either way, a Pb-Sb bond is estimated to be 2.93 Å, which compares well with the average distance of 2.953 Å observed for $Pb_2Sb_2^{2-}$.

The $\text{Sn}_2\text{Bi}_2^{2-}$ and $\text{Pb}_2\text{Sb}_2^{2-}$ anions, though ideally $\text{C}_{2\text{v}}$ clusters, are the first heteroatomic members of the 20-electron tetrahedral family which includes P_4 , As_4 , Sb_4 , Ge_4^{4-} , Sn_4^{4-} , and Pb_4^{4-} .¹⁵ (The latter three occur as isolated tetrahedra in intermetallic Zintl phases, but the formal 4- charge is derived only for complete electron transfer from the alkali metal to the cluster, which is not entirely plausible.) MO treatments and rationalizations of the bonding for such 20-electron tetrahedra are well known.^{62,15,29} In contrast, the isoelectronic $\text{Tk}_2\text{Te}_2^{2-}$ has a butterfly or folded diamond configuration with TL atoms at the fold and is derived most easily from a D_{2h} square planar geometry. This is energetically more favorable than a tetrahedral configuration which would formally partition the charge to give positive and large negative charges on Te and TL, respectively.²⁷ The $\text{Sn}_2\text{Bi}_2^{2-}$ or $\text{Pb}_2\text{Sb}_2^{2-}$ anions by comparison can be credibly represented by a localized valence bond cluster with negative formal charges on the tin or lead atoms. A similar folded diamond shape for $\text{Sn}_2\text{Bi}_2^{2-}$ or $\text{Pb}_2\text{Sb}_2^{2-}$ would be less favorable energetically as it would reduce the number of bonds and not allow the considerable delocalization of charge that the tetrahedral geometry does.

Wilson reports that an appropriate ¹¹⁹Sn solution NMR signal for Sn₂Bi₂²⁻ is observed upon reaction of LiSnBi or NaSnBi with ethylenediamine or reaction of KSn₂ and K₃Bi₂ with 2,2,2-crypt in ethylenediamine.⁶³ He has similarly "identified" the Sn₈Bi³⁻ and Sn₈Sb³⁻ anions⁶³ (although at least in the latter case the relative intensities may as easily be indicative of nine tin atoms³³), but both the charge assignment and number of Bi or Sb atoms are speculative. Our investigations also indicate the possibility of other new heteroatomic anions from group IV and V elements; it is not unlikely that they may also represent new configurations.

The ${\rm Sb_4}^{2-}$ and ${\rm Sb_7}^{3-}$ Structures

The final positional and thermal parameters for all atoms in $(2,2,2-\text{crypt-K}^+)_2\text{Sb}_4^{2-}$ and $(2,2,2-\text{crypt-K}^+)_3\text{Sb}_7^{3-}\cdot 2\text{en}$ are listed in Tables 13 and 14, respectively. Characteristic distances and angles for the Sb_4^{2-} anion are given later in Table 15, while those for the Sb_7^{3-} anion together with comparable values from the crypt-Na⁺ salt are given later in Table 16. Remaining distances and angles for the crypt cations and en molecules are listed in Appendix A. The observed and

Table 13. Positional and thermal parameters for (2, 2, 2-crypt-K) Sb 2 4

•

.

Atom	x	y	2	B11	B22	B33	B12	B13	823
Sb 1	0. 18408(6)	0.86645(7)	0.00182(6)	5. 16(3)	6. 52(4)	6.60(4)	-1.64(3)	0. 41 (3)	1.39(3)
SÞ2	0.02067(6)	0.06419(6)	0.85552(6)	6.32(4)	6.50(4)	5.37(4)	-2.67(3)	0. 47(2)	1. 40(3)
ĸ	0.3232(2)	0.3242(1)	0.4082(1)	5.16(7)	4.08(7)	3, 58(6)	-2.11(6)	1.06(5)	-0.09(5)
03	0.0967(8)	0.3211(10)	0.2767(6)	7.9(4)	12.9(6)	4.4(3)	-6.3(4)	0.9(3)	-1.6(3)
013	0.3303(8)	0.5186(6)	0.2866(5)	12.7(5)	5.8(3)	3.6(2)	-4.9(3)	0.9(3)	0.8(2)
023	0. 5212(8)	0.1058(6)	0.2865(5)	8.2(4)	6.1(3)	4.4(3)	-1.7(3)	2.8(3)	-1.2(2)
06	0. 1732(5)	0.2568(6)	0.5262(5)	3.9(2)	5.7(3)	6.3(3)	-2.2(2)	0.6(2)	0.8(2)
016	0.5644(5)	0.1774(5)	0.5371(5)	4.7(2)	3.7(2)	5.6(3)	-1.4(2)	1.2(2)	-0.1(2)
026	0.2691(5)	0.5615(5)	0.5343(5)	5.5(2)	4.4(2)	4. 5(2)	-2.7(2)	1.0(2)	0.2(2)
NO	0.3026(9)	0.3043(8)	0.1372(6)	9.2(5)	6.7(4)	4.1(3)	-4.6(4)	1.2(3)	-0.2(3)
N9	0.3426(6)	0.3463(6)	0.6817(5)	5.4(3)	4.1(3)	4.0(3)	-1.9(2)	1.4(2)	0.3(2)
C21	0.4102(18)	0. 1831 (16)	0.0937(11)	13.6(11)	10.3(9)	4.7(5)	0.4(8)	1.5(6)	-1.8(5)
C4	0.0814(11)	0.2242(13)	0.3294(13)	6.4(5)	8.2(7)	9.8(8)	-2.7(5)	-1.3(5)	-2.6(6)
C14	0. 2399(9)	0.6413(9)	0.3395(9)	6.3(4)	5.9(4)	6.9(5)	-2.8(4)	0.2(4)	2.3(4)
C24	0.6455(13)	0.0857(11)	0.3401(11)	9.0(7)	7.9(6)	7.4(6)	-4. 5(5)	4.9(5)	-2.8(5)
C5	0.0567(10)	0.2590(13)	0.4544(11)	6.4(5)	11.2(8)	8.1(6)	-5.8(5)	-2.7(4)	4.4(6)
C15	0.2846(10)	0. 6500(7)	0. 4728(8)	7.5(5)	3.7(3)	6.3(4)	-2.7(3)	2.3(4)	0.2(3)
C25	0.6544(9)	0.0627(9)	0.4697(10)	5.0(4)	4.5(4)	8. 5(6)	-0.5(3)	1.0(4)	-1,3(4)
C7	0.1467(9)	0.3058(10)	0.6514(8)	5.7(4)	6.8(5)	5.3(4)	-3.0(4)	1.4(3)	0.5(3)
C17	0.3088(9)	0. 5695(8)	0.6609(8)	6.6(4)	5.0(4)	4.6(4)	-2.6(3)	1. 5(3)	-1.0(3)
C27	0. 5702(8)	0. 1587(8)	0.6606(8)	5.4(4)	4.1(3)	6.1(4)	-1.3(3)	0.3(3)	0.5(3)
св	0.2802(9)	0. 2755(9)	0.7219(7)	6.8(4)	6.4(4)	4.3(3)	-3.7(4)	1.1(3)	0.9(3)
C18	0. 2741 (9)	0. 4856(8)	0.7250(7)	6.7(4)	4.8(4)	4.3(3)	-2.4(3)	2.0(3)	-0.8(3)
C28	0.4835(8)	0.2890(8)	0.7293(7)	5.1(4)	5.7(4)	4.2(3)	-2.1(3)	0.1(3)	0.0(3)

a The last digit identifies the position along the crypt chain, the first digit (O (missing), 1 or 2) identifies the chain.

Table 13. Continued

Atom	x	y	Z	B	Atom	x	y	2	B
C1a b	0.200(2)	0. 278(2)	0.086(2)	3.7(4)	C20	0. 113(2)	0. 257(3)	0. 155(2)	8.0(3)
C1b	0. 156(3)	0.343(3)	0.097(2)	7. 5(5)	C12a	0.358(2)	0. 490(2)	0.154(2)	6.6(4)
C11a	0.282(2)	0. 425(2)	0.093(2)	5.2(3)	C12b	0.262(2)	0. 533(2)	0.158(2)	6.9(4)
C11b	0. 357(3)	0.386(2)	0.101(2)	7.0(4)	C22a	0.482(2)	0.094(2)	0. 148(2)	7.1(4)
C2a	0.075(2)	0.350(2)	0. 145(2)	7.2(4)	C226	0. 542(2)	0. 123(2)	0. 167(2)	6.8(4)

b a and b denote the disordered pairs of carbon atoms at 0.50 occupancy.

Table 14. Positional and thermal parameters for (2, 2, 2-crypt-K) Sb .2en 3 7

Atom	x	y	Z	B11	B22	B33	B12	B13	B23
Sb 1	0.31262(9)	0.15894(6)	0. 79123(9)	2. 85(6)	2. 91 (6)	3.88(6)	0. 12(5)	0.48(5)	-0. 29(5)
S62	0.36995(9)	0. 24997(7)	0.66639(10)	2. 90(6)	4.69(7)	3. 72(6)	-0,69(5)	0.82(5)	-0. 17(5)
Sb3	0.20155(9)	0. 18220(6)	0.60189(9)	3. 59(6)	3. 25(6)	3. 20(6)	-0.67(5)	0.44(5)	-0. 97(5)
Sb4	0.23242(10)	0. 22837(6)	0.92250(9)	4.14(7)	3.60(7)	3.28(6)	-0.14(5)	0.74(5)	-0. 10(5)
Sb 5	0.31312(10)	0.35957(7)	0.74188(10)	4.00(7)	3. 56(7)	4. 57(7)	-1. 47(6)	0.06(5)	-0. 25(5)
S06	0.05935(9)	0. 25747(6)	0.63954(10)	2.66(6)	3. 19(6)	4.36(7)	-0.56(5)	0.08(5)	0. 06(5)
Sb7	0.15470(9)	0. 32173(6)	0.80308(10)	3. 63(6)	2.95(6)	3. 75(6)	-0.16(5)	0.71(5)	-0. 45(5)
К1	0.8187(3)	0.0255(2)	0.8112(3)	3.3(2)	2.2(2)	2.8(2)	-0.3(1)	0.2(1)	0.0(1)
K2	0. 2790(3)	0. 4783(2)	0.3173(3)	3.8(2)	2.6(2)	3.0(2)	-0.3(2)	1.0(1)	-0.1(1)
КЗ	0. 7745(3)	0.3084(2)	0.0782(3)	2.6(2)	2.5(2)	2.9(2)	-0.3(1)	0.3(1)	-0.3(1)
N100	0.0264(10)	0.9632(7)	0.3033(11)	3. 1 (8)	4.2(7)	4.0(8)	-0.6(6)	-0.4(6)	1.1(7)
N109	0.3386(11)	0.9871(7)	0.0726(11)	4.2(8)	3. 6(8)	4.0(8)	1.9(7)	0.9(6)	0.4(6)
0103	0. 1003(8)	0.0851(6)	0.2630(8)	3.6(6)	3. 4(6)	3.0(6)	-0.3(5)	1.2(5)	-0.5(5)
0106	0.2660(9)	0.0891(5)	0.1811(9)	4.2(6)	2.7(6)	3.8(6)	-0.8(5)	0.7(5)	-0.2(5)
0112	0.0231(10)	0.9144(6)	0.0985(9)	6.6(8)	4.6(7)	3.4(6)	-3.1(7)	-1.9(6)	1.3(6)
0115	0. 1575(12)	0.9402(6)	0.9807(10)	9.2(11)	2.9(7)	4. 5(7)	-1.8(7)	-0. 5(7)	-0.4(6)
0120	0.2097(8)	0.9100(5)	0.3680(8)	2.9(6)	3.3(6)	3. 5(6)	-0.1(5)	0.7(5)	0.5(5)
0123	0.3424(8)	0. 9028(6)	0.2396(8)	3.0(6)	3.7(6)	2.9(6)	0.2(5)	1.2(4)	0.7(5)
N200	0.3506(10)	0. 3742(6)	0.2053(10)	3.4(7)	2.1(7)	3.8(7)	-0.5(6)	0.9(6)	-0.9(6)
N209	0.2120(15)	0. 5829(8)	0.4348(12)	9.3(13)	3.3(9)	4.2(9)	0.1(9)	1.9(9)	-0.5(7)
0203	0.2280(9)	0.3566(6)	0.3519(8)	4.3(6)	3.2(6)	2.9(6)	-1.4(5)	0.1(5)	-0.1(5)
0206	0. 1979(10)	0. 4558(6)	0.4782(9)	6.7(8)	3.4(6)	3.0(6)	-0.8(6)	1.9(6)	-0.3(5)
0212	0. 2218(8)	0.4684(6)	0.1116(8)	3.5(6)	4.1(7)	3.0(6)	-0.4(5)	-0.1(5)	0.7(5)
0215	0. 1289(10)	0. 5496(7)	0.2278(11)	5.9(8)	5.2(8)	6.4(9)	3.0(7)	1.9(7)	1.9(7)
0220	0.4749(9)	0.4679(6)	0.3160(10)	3. 5(7)	4.5(7)	5.7(8)	-2.3(6)	0.9(6)	0.2(6)

a The first digit refers to the crypt, the latter two to the position within the crypt.

Table 14. Continued

Atom	x	y.	2	B11	B22	B33	B12	B13	B 23
0223	0. 4036(12)	0. 5779(6)	0.3874(11)	9.6(11) 3.2(7)	6.9(9)	-3.3(7)	3.3(8)	-2. 7(6)
N300	0.0484(9)	0.6845(7)	0. 7874(10)) 2.2(6)	3. 6(8)	2.7(7)	-0.2(6)	0.0(5)	0.2(6)
N309	0.3976(10)	0. 6990(7)	0.0565(10)) 2.3(7)	3. 5(8)	3.4(7)	-0.1(6)	-0.1(5)	0.2(6)
0303	0. 1581 (8)	0. 5741 (5)	0.8464(8)	3.1(6)	3.0(6)	3.1(6)	-0.4(5)	-0.1(4)	-1. 5(5)
0306	0.3475(8)	0. 5874(6)	0. 9286(8)	3.9(6)	3.2(6)	3.1(6)	0.1(5)	0.1(5)	-0.1(5)
0312	0. 2072(8)	0.7480(6)	0. 7374(9)	3.5(6)	4.2(7)	3. 5(6)	-0.9(5)	0.7(5)	0. 5(5)
0315	0.3570(9)	0.7797(6)	0.8900(9)	4.1(7)	3.9(7)	4.2(7)	-0.8(5)	1.0(5)	0. 5(5)
0320	0.0637(8)	0.7410(5)	0. 9851 (8)	3.0(6)	1.9(5)	3. 3(6)	-0.8(4)	0.8(4)	-0.1(4)
0323	0.2219(7)	0.7182(5)	0. 1254(8)	2.9(5)	2.2(5)	2. 5(5)	-0.3(4)	0.5(4)	-0.6(4)
Atom	x	y	2	В	Atom	x	y	Z	B
C101	0.980(1)	0.0247(10)	0.309(2)	4.8(5)	C219 0	0.504(2)	0. 4275(11)	0.242(2)	5. 5(5)
C102	0.050(1)	0.0762(10)	0.340(2)	4.5(4)	C221	0. 521 (2)	0. 5256(10)	0.316(2)	4. 9(5)
C104	0.168(1)	0.1338(9)	0.288(1)	3.4(4)	C222 (0. 500(2)	0.5660(11)	0. 399(2)	5. 5(5)
C105	0.214(1)	0.1427(9)	0.200(1)	3.6(4)	C224 (0.380(2)	0.6176(15)	0.466(2)	8. 5(8)
C107	0.316(1)	0.0988(10)	0.103(1)	4.5(4)	C225 (0. 278(2)	0.6344(14)	0. 437(2)	8. 3(8)
C108	0.385(2)	0.0472(11)	0.102(2)	5.9(5)	C301 (D. 010(1)	0. 6233(8)	0.791(1)	3.0(4)
C110	0.957(1)	0.9182(10)	0.248(1)	4.4(4)	C302 (0. 080(1)	0. 5704(10)	0.769(1)	4.2(4)
C111	0. 938(2)	0.9266(12)	0.137(2)	5.9(6)	C304 (0.228(1)	0. 5312(9)	0.822(1)	4.0(4)
C113	0.005(2)	0.9068(12)	0.993(2)	6.6(6)	C305 (0.304(1)	0. 5292(9)	0.911(1)	4.1(4)
C114	0.087(2)	0.8938(12)	0.957(2)	6.2(6)	C307 (0.421(1)	0.5861(9)	0.012(1)	3.8(4)
C116	0.242(2)	0.9319(11)	0. 935(2)	5. 5(5)	C308 (0.464(1)	0.6505(7)	0.030(1)	3.4(4)
C117	0.306(2)	0.9840(11)	0.968(2)	5.2(5)	C310 (0.060(1)	0.6990(10)	0.685(1)	4.2(4)
C118	0.061(1)	0.9424(10)	0.403(1)	4.2(4)	C311 (0.116(1)	0.7584(10)	0.683(1)	4.4(4)
C119	0.128(1)	0.8897(9)	0.402(1)	4.1(4)	C313 (0.265(1)	0.8007(10)	0.735(1)	4.3(4)
C121	0.278(1)	0.8637(9)	0.375(1)	3.4(4)	C314 (0.363(1)	0.7905(10)	0.791(2)	4.6(5)
C122	0.363(1)	0.8877(10)	0.340(1)	4.4(4)	C316 (0.447(1)	0. 7774(9)	0.948(1)	3. 7(4)
C124	0.426(1)	0.9261(10)	0.209(2)	4.6(5)	C317 C), 441(1)	0. 7598(9)	0.052(1)	3.3(4)

Table 14. Continued

Atom	x	y	z	В	Atom	x	y	z	B
C125	0.404(2)	0.9344(10)	0.099(2)	5.0(5)	C318	0.983(1)	0.7317(8)	0.821(1)	3.2(4)
C201	0.302(1)	0. 3175(9)	0.221(1)	4.2(4)	C319	0.975(1)	0. 7270(9)	0.929(1)	3.4(4)
C202	0.292(1)	0.3099(9)	0.329(1)	4.1(4)	C321	0.058(1)	0.7401(9)	0.088(1)	3. 5(4)
C204	0.214(2)	0.3478(11)	0. 452(2)	5.1(5)	C322	0.150(1)	0.7592(8)	0.149(1)	3.1(4)
C205	0.151(2)	0.3992(11)	0. 481 (2)	5.6(5)	C324	0.308(1)	0.7319(9)	0.186(1)	3. 5(4)
C207	0. 155(2)	0. 5026(12)	0. 532(2)	6.2(6)	C325	0.381(1)	0.6909(9)	0.157(1)	3. 5(4)
C208	0.219(2)	0. 5607(12)	0. 536(2)	5.9(6)	NEN1	0.300(2)	0.0356(12)	0. 482(2)	8.9(6)
C210	0.331(1)	0.3871(9)	0.099(1)	3.6(4)	CEN1	0.366(2)	0.0184(14)	0. 571 (2)	7.6(7)
C211	0.234(1)	0.4080(10)	0.065(2)	4.6(5)	CEN2	0.303(2)	0. 9778(13)	0. 633(2)	7.3(7)
C213	0.129(1)	0. 4925(10)	0.076(2)	4.6(5)	NEN2	0.366(2)	0.9657(11)	0. 725(2)	7.5(6)
C214	0. 120(2)	0.5555(11)	0.128(2)	5.1(5)	NEN3	0. 434(2)	0.0857(11)	0.353(2)	7.6(6)
C216	0. 113(2)	0.6086(13)	0.275(2)	7.3(7)	NEN4	0. 529(2)	0.2354(11)	0. 453(2)	8.3(6)
C217	0. 119(2)	0. 5994(13)	0.388(2)	7.3(7)	CENG	0. 441 (3)	0.168(2)	0. 371 (3)	11.2(10)
C218	0.449(1)	0.3667(10)	0.240(2)	4. 5(5)	CEN4	0. 517(3)	0.157(2)	0. 423(3)	14. 0(13)

calculated structure factors for the two compounds have been deposited in reference 23.

The ${\rm Sb}_4^{2-}$ salt is indeed isostructural with $(2,2,2-{\rm crypt-K}^+)_2 {\rm Bi}_4^{2-.12}$ The drawing of the unit cell presented in Figure 4 demonstrates the pseudohexagonal close-packing of the ions. It is amazing how similar the disorder of the α - and β -carbon atoms is in the two compounds, in spite of the smaller size of the ${\rm Sb}_4^{2-}$ anion, supporting the conclusion that the disorder is real and correctly treated. This disorder represents a choice of whether the conformations of the N-C α -C β fragments at the two ends of each crypt chain are placed in an essentially eclipsed (a) or crossed (b) manner when viewed down the N-K-N axis, the latter being the normal configuration for 2,2,2-crypt-K⁺ salts. The disordered end of the crypt does have the closer interactions with the anion, which undoubtedly influences this behavior.

The most interesting aspect of the structure is the tetraantimonide(2-) anion, Sb_4^{2-} . It is truly square planar (D_{4h}), Figure 5 and Table 15, although the point symmetry is only required to be C_i . As with Bi_4^{2-} and Te_4^{2+} , the MO diagram implies a bond order of 1.25, with four bonding levels (a_{1g} , b_{2g} , e_u , a_{2u}) and one nonbonding (actually slightly antibonding) level (e_g) accommodating the 14 skeletal electrons.¹² The average Sb-Sb bond distance of 2.750 Å is significantly shorter than that in Sb₇³⁻, 2.797 Å.

It is odd that the ${\rm Sb}_4^{2-}$ anion was never found in earlier studies of Na-Sb binary alloy reactions with crypt, in spite of the fact that alloy compositions ranging from NaSb to NaSb₃ were investigated; rather

Figure 4. Approximate $[1\overline{10}]$ view of the unit cell of $(2,2,2-crypt-K^{+})_2Sb_4^{2-}$ with thermal ellipsoids at the 30% probability level. For clarity, only one consistent set (b) of the disordered carbon atoms is shown

Figure 5. Two views of the Sb_4^{2-} anion

		•••		
Atom 1	Atom 2	d, Å	Atoms	Angle, deg
SÞl	Sb2	2.749 (1)	1-2-1'	89.95 (3)
Sbl	Sb2'	2.751 (1)	2-1-2'	90.05 (3)
SPI	Sb1'	3.888 (1)		
ЅЪ2	Sb2'	3.891 (1)		

Table 15. Distances and angles for Sb_{4}^{2-}

 $(2,2,2-\text{crypt-Na}^+)_3 \text{Sb}_7^{3-}$ was the only product.²⁴ However, all the ternary alloys KGeSb, KAuSb, and KPbSb demonstrate facile formation of Sb_4^{2-} . Although binary K-Sb alloys have not been investigated, presumably Sb_4^{2-} could be readily produced from these as well unless the ternary alloys serve in some unusual way as reducing agents. There is a cell volume decrease expected on switching from crypt-K⁺ to crypt-Na⁺ cations (approximately 30 Å³ per crypt) which may destabilize the smaller anion. More likely, the growth conditions used for the Na-Sb reactions, namely solvent evaporation after a few days, may have been inadequate for formation of Sb_4^{2-} crystals which spontaneously precipitate over longer periods.

The unit cell for $(2,2,2-\text{crypt}-K^+)_3\text{Sb}_7^{3-}\cdot 2\text{en}$ bears no obvious resemblance to that of the previously known $(2,2,2-\text{crypt}-Na^+)_3\text{Sb}_7^{3-}$ salt.²⁴ Instead, the present phase's large volume (722 Å³/crypt) and close similarity in dimensions to other cells containing six crypt-K⁺ ions such as $(2,2,2-\text{crypt}-K^+)_3(\text{TLSn}_8^{3-}\text{TLSn}_9^{3-})_{l_2}\cdot \text{en}^{28}$ led to an expectation of a nine-atom cluster. The packing of the ions in the unit cell is indeed similar (compare Figure 6 with later Figure 8), with the center of the anion and the three independent potassium atoms in essentially the same positions as in the T&/Sn salt although the N-K-N axes of the cations are oriented in different directions. The extra solvent molecule compensates for the smaller Sb_7^{3-} anion. The 2,2,2-crypt-K⁺ cations in this structure have normal conformations, with the potassium centrally located along the N-N axis. However, crypt 3 is unusually symmetrical, with somewhat shorter than normal K-N bonds (\sim 2.90 Å compared to \sim 3.00 Å in the other two crypts) and with a very narrow range of K-O bond lengths.

This structure is very well behaved, with small thermal parameters originating from both the low temperature of the data collection and the good quality of the crystal; even the en solvent molecules show none of the usual disorder and have well-defined z-shaped conformations. Consequently, the standard deviations for the bond distances are generally about half those observed for the crypt-Na⁺ salt (see Table 16). The hepta-antimonide(3-) anion depicted in Figure 7 has an approximate C_{3v} configuration, analogous to the isoelectronic P_7^{3-64} , As_7^{3-65} and $P_4S_3^{66}$ species which all exhibit a similar variance in distances for the three types of bond lengths.⁶⁷ It is interesting that the anion chooses to be distorted somewhat from C_{3v} symmetry in that the Sb2-Sb3 bond distance is significantly shorter than Sb1-Sb2 and Sb2-Sb3 in the triangular base, and Sb5-Sb7 is shorter than Sb4-Sb7 and Sb6-Sb7 to the trigonal apex. There is one fairly short contact to a crypt carbon, Sb5-C221 at 3.71 Å, which may be pertinent to the latter difference.

Figure 6. Approximate [001] view of the unit cell of (2,2,2-crypt-K⁺)₃Sb₇³⁻·2en. For clarity, crypt carbon atoms are not included, and the N-K-N axes are differentiated. The dashed lines indicate H-bonding

		Dista	nces, Å		
Sb atom	ns K ⁺ salt ^a	Na ⁺ salt ^b	Sb atoms	K ⁺ salt	Na ⁺ salt
1-2	2.906 (2)	2.856 (4)	6–7	2.785 (2)	2.776 (4)
1-3	2.904 (2)	2.880 (4)	1-7	4.207 (2)	4.210 (4)
2-3	2.876 (2)	2.838 (3)	2-7	4.180 (2)	4.159 (4)
1-4	2.717 (2)	2.693 (4)	3-7	4.159 (2)	4.209 (4)
2-5	2.735 (2)	2.706 (4)	4-5	4.183 (2)	4.313 (4)
3-6	2.728 (2)	2.711 (4)	4-6	4.359 (2)	4.253 (4)
4-7	2.782 (2)	2.824 (4)	5-6	4.345 (2)	4.397 (4)
5-7	2.741 (2)	2.755 (4)	-		

Table 16. Comparative distances and angles for Sb_7^{3-} anions in $(2,2,2-\text{crypt}-\text{K}^+)_3\text{Sb}_7^{3-}\cdot2\text{en}$ and $(2,2,2-\text{crypt}-\text{Na}^+)_3\text{Sb}_7^{3-}$

		Angl	les, deg		
Sb aton	ns K ⁺ salt	Na ⁺ salt	Sb atoms	K ⁺ salt	Na ⁺ salt
2-1-3	59.35 (5)	59.3 (1)	2-3-6	106.30 (6)	106.0 (1)
1-2-3	60.29 (5) 60.36 (5)	60.8 (1) 59.9 (1)	1-4-7 2-5-7	99.83 (6) 99.51 (6)	99.5 (1) 99.2 (1)
2-1-4 3-1-4	103.08 (6) 105.06 (6)	105.2 (1) 105.4 (1)	3-6-7 4-7-5	97.95 (6) 98.48 (6)	100.2 (1) 101.3 (1)
1-2-5 3-2-5 1-3-6	104.02 (6) 104.88 (6) 105.88 (6)	106.1 (1) 106.1 (1) 102.6 (1)	47-6 5-7-6	103.07 (6) 103.66 (6)	96.9 (1) 103.4 (1)

^aThis work. ^bReference 24 (atom numbering has been changed to be comparable).

Figure 7. The Sb_7^{3-} anion, with approximate C_{3v} axis vertical

The shortest distance to an en atom is Sb3-NEN1 at 3.90 (3) Å, which is much too long to contemplate any hydrogen bond type interaction. However, there does appear to be hydrogen bonding between the two en molecules, with a NEN1-NEN3 distance of 3.10 (3) Å; the average observed distance for common N-H···N hydrogen bonds is $3.1 \text{ Å}.^{68}$ These two nitrogen atoms are also surprisingly close to two crypt oxygens; the distances are NEN3-0106 at 3.12 (2) Å and NEN1-0120 at 3.27 (3) Å. The distortions in the Sb $_7^{3-}$ anion found in the crypt-Na⁺ salt are qualitatively somewhat similar but there are also major differences, e.g., in Sb4-Sb7. In general, comparable distances in the two clusters differ by 2 to 10 σ , changes in the crystal packing of the surrounding crypt cations undoubtedly being the prime factor here. However, it is surprising that the result of the crypt-K⁺ structure solution at -80° actually has the longer average Sb-Sb bond distances, 2.797 Å compared with the room temperature results for crypt-Na⁺ salt of 2.782 Å.

It is clear that the presence of alloy residue during crystal growth greatly enhances the production of the homopolyatomic anions, especially for the more soluble elements. In the KPbSb reaction which produces Sb_4^{2-} and phase V (see Table 5), only small amounts of Pb are found in the products, while the heteroatomic $\text{Pb}_2\text{Sb}_2^{2-}$ anion is easily obtained from solutions decanted from the same alloy after three days. Rudolph and coworkers³⁴ also observed during NMR investigations of similar ternary alloy systems dissolved in en that equilibrium between anions in solution is very slow and occurs principally at the surface of the solid alloys. In the KGeSb reactions, the amount of germanium present in solution may

be insufficient to begin with; certainly when crystals were grown in the presence of alloy, no significant amount of germanium in the products was observed. A much more germanium-rich alloy is probably required in order to produce Ge-Sb heteropolyatomic anions, since Ge homoatomic anions like Ge_9^{4-} and Ge_9^{2-22} and perhaps any mixed anions as well are much less soluble than the polyantimony anions.

It is interesting to speculate whether the unknown Bi_7^{3-} ion can be produced. Zintl and Dullenkopf¹⁰ reported a Bi_7^{3-} species from exhaustive extraction of bismuth-rich sodium alloys, but their analytical data are much more appropriate to the composition Bi_4^{2-} .¹² It should be noted that they also saw no evidence for Sb_4^{2-} , only Sb_3^{3-} and Sb_7^{3-} .^{8,10} Reactions of various K-Bi alloys with crypt in en have produced only the Bi_4^{2-} salt, though various colored solutions have been noted in the course of the reaction.^{12,44} Perhaps the use of Na-Bi alloys or an appropriate ternary composition may facilitate the isolation of a Bi_7^{3-} anion analogous to Sb_7^{3-} .

The Structure and Properties of ${\rm Sn_0}^{3-}$

Table 17 lists the final positional and thermal parameters for $(2,2,2-crypt-K^+)_3 \operatorname{Sn_9}^{3-} \cdot 1.5 \operatorname{en.}$ Distances, bond angles, and dihedral angles for the $\operatorname{Sn_9}^{3-}$ cluster are given in Table 18 while remaining distances and angles for the cations and en molecules are listed in Appendix A. Observed and calculated structure factors have been deposited in reference 20. The unit cell is drawn in Figure 8 and two views of the $\operatorname{Sn_9}^{3-}$ anion are shown in Figure 9.

Table 17. Positional and thermal parameters for (2,2,2-crypt-K) Sn ,1.5en 3 9

Atom	x	y	Z	B11	B22	833	B12	B13	B23
Sn 1	0.35928(8)	0.25828(6)	0.70553(9)	2.69(5)	5.48(7)	3.31(5)	0. 12(5)	1.00(4)	0. 77(5)
Sn2	0. 17619(8)	0.34118(6)	0.68732(9)	3, 22(5)	4.60(6)	3. 30(5)	0. 18(5)	0.16(4)	1. 53(5)
Sn3	0. 15948(9)	0.33082(7)	0. 89735(9)	3.56(6)	5.60(7)	3. 50(6)	0.81(5)	1.23(4)	0. 71 (5)
Sn4	0.34338(8)	0. 24559(6)	0.91709(9)	2, 87(5)	5.61(7)	3. 02(5)	0.60(5)	-0.19(4)	0.87(5)
Sn5	0. 18405(9)	0.21611(7)	0. 57515(9)	4. 17(6)	6. 13(8)	3. 28(6)	0.06(5)	-0.24(5)	0.35(5)
Sn6	0.06435(8)	0. 23462(7)	0. 72219(10)	2, 64(5)	6. 27(8)	4. 58(6)	-0. 92(5)	-0.21(4)	1.99(6)
Sn7	0. 15952(9)	0. 19656(7)	0.90614(10)	3, 51 (6)	6.62(8)	5.09(7)	0. 75(5)	1.58(5)	2.90(6)
Sn8	0. 24932(10)	0.15000(6)	0.74071(10)	4, 99(7)	4.21(6)	4. 27(6)	-0. 17(5)	0.91(5)	0. 50(5)
Sn9	0.33468(8)	0.36678(6)	0.85305(10)	3, 19(5)	4.85(7)	4.24(6)	-0. 48(5)	-0.01(5)	0.33(5)
K1	0. 6831 (3)	0.0134(2)	0. 7295(3)	4.4(2)	3.7(2)	4.6(2)	-0.1(1)	0.8(2)	1.0(2)
K2	0. 2913(2)	0. 4875(2)	0.3358(3)	3.0(2)	4.6(2)	2.9(2)	0.1(1)	0.3(1)	1.1(1)
КЗ	0.8249(2)	0.3046(2)	0.2000(3)	2.6(1)	4.8(2)	3.0(2)	0.4(1)	0.5(1)	0.6(1)
Atom	x	y	2	В	Atom	x	y	Z	B
a N11	0.6447(11)	0. 8891 (8)	0. 7791 (12)	4.9(3)	C21	0. 154(2)	0. 3406(13)	0. 239(2)	8.0(7)
N12	0.7163(16)	0.1398(11)	0. 6815(18)	8.6(6)	C22	0. 102(2)	0.3813(12)	0.200(2)	6.8(6)
011	0.5537(11)	0.0018(7)	0.8548(11)	6.5(3)	C23	0.063(2)	0. 4886(12)	0. 192(2)	7.3(6)
012	0. 5772(12)	0. 1143(8)	0. 7933(13)	7.3(4)	C24	0.065(2)	0. 5470(12)	0. 253(2)	7.0(6)
013	0.8278(9)	0. 9495(6)	0.8262(10)	5.3(3)	C25	0.164(2)	0. 6315(10)	0.345(2)	5. 6(5)
014	0.8548(12)	0.0736(8)	0.8083(13)	7.4(4)	C26	0.256(1)	0. 6613(10)	0.350(1)	5.0(4)
015	0.6074(10)	0.9160(7)	0. 5734(11)	6.1(3)	C27	0.307(2)	0. 3167(12)	0.354(2)	6.8(6)
016	0. 6700(12)	0. 0273(8)	0. 5345(12)	7.2(4)	C28	0.301(2)	0.3483(15)	0. 457(2)	9. 5(8)
N21	0.2552(12)	0.3507(8)	0.2756(13)	5.4(4)	C29	0.340(2)	0. 4365(10)	0. 573(2)	5.6(5)
N22	0.3319(10)	0.6248(7)	0.4021(11)	4.2(3)	C210	0.394(1)	0. 4954(10)	0. 599(2)	5.1(4)
021	0.1103(10)	0. 4453(7)	0.2493(11)	5.9(3)	C211	0.394(2)	0. 5956(11)	0. 568(2)	6.3(5)
022	0.1570(9)	0. 5736(6)	0. 2781 (9)	4.6(3)	C212	0.336(2)	0.6416(11)	0. 510(2)	5.8(5)
023	0.3507(7)	0.4075(6)	0.4746(9)	4.9(3)	C213	0.290(2)	0.3293(11)	0. 185(2)	6.2(5)

a The first digit refers to the crypt cation.

Table 17. Continued

Atom	¥		7		Atom	¥			
	<u> </u>	Ч	•					•	
024	0.3484(8)	0.5376(5)	0.5366(9)	4.1(2)	C214	0.380(2)	0.3572(11)	0.184(2)	5.9(5)
025	0.3713(9)	0.4219(6)	0. 1881 (10)	5.1(3)	C215	0.443(1)	0.4484(9)	0.156(1)	4.9(4)
026	0. 4228(8)	0.5452(6)	0.2618(9)	4.2(2)	C216	0.427(1)	0.5162(9)	0.165(1)	4.4(4)
N31	0.9026(11)	0.2233(7)	0.3470(11)	4.5(3)	C217	0.424(1)	0.6105(9)	0.269(1)	4.4(4)
N32	0.7456(9)	0.3879(7)	0.0541(10)	3.6(3)	C218	0.419(1)	0.6399(10)	0.372(2)	5.4(4)
031	0.7133(9)	0.2159(6)	0.2465(9)	4.7(3)	C31	0.837(1)	0.1741(10)	0.349(2)	5.3(4)
032	0. 6342(8)	0.3020(6)	0.1302(9)	4. 5(3)	C32	0.739(1)	0.1745(10)	0.337(2)	5.1(4)
033	0. 9058(9)	0.3603(6)	0.3992(9)	4.9(3)	C33	0.618(2)	0.2264(11)	0.225(2)	6.0(5)
034	0. 8537(9)	0. 4337(6)	0.2516(10)	5.1(3)	C34	0.575(1)	0.2419(10)	0.122(1)	5.0(4)
035	0 9583(8)	0.2196(6)	0. 1551 (9)	4.6(3)	C35	0.607(1)	0.3235(9)	0.037(1)	4.8(4)
036	0. 8649(8)	0.2848(6)	0.0087(9)	4. 5(3)	C36	0.647(1)	0.3869(9)	0.046(1)	4.8(4)
C11	0. 594(2)	0.8969(10)	0.861(2)	5.8(5)	C37	0.925(1)	0.2626(9)	0.445(1)	4.2(4)
C12	0. 514(2)	0.9402(11)	0.846(2)	6.6(5)	C38	0.971(1)	0.3223(10)	0. 451 (2)	5.3(4)
C13	0. 487(2)	0.0477(12)	0.851(2)	6.9(6)	C39	0.939(1)	0.4214(10)	0.406(2)	5.4(4)
C14	0. 531(2)	0. 1075(13)	0.868(2)	8.0(7)	C310	0.868(1)	0.4576(10)	0.355(2)	5.1(4)
C15	0. 612(2)	0. 1759(14)	0.803(2)	8.7(7)	C311	0.793(2)	0.4754(11)	0.196(2)	5.7(5)
C16	0. 639(2)	0.1793(15)	0.701(2)	9.1(8)	C312	0.785(1)	0. 4512(10)	0.092(2)	5.6(5)
C17	0.731(2)	0.8601(11)	0.808(2)	6.3(5)	C313	0.989(2)	0.1967(10)	0.319(2)	5.6(5)
C18	0.801(2)	0. 9058(12)	0.884(2)	6.9(6)	C314	0.977(2)	0.1695(11)	0.207(2)	6.1(5)
C19	0.904(2)	0.9870(13)	0.882(2)	7.5(6)	C315	0.947(1)	0.1970(10)	0. 050(2)	5.1(4)
C110	0.929(2)	0.0335(13)	0.821(2)	7.6(6)	C316	0.948(1)	0. 2523(9)	-0.002(1)	4.8(4)
C111	0.880(2)	0.1182(13)	0.756(2)	7.5(6)	C317	0.861(1)	0.3399(9)	0.963(1)	4.9(4)
C112	0.802(2)	0.1660(15)	0. 753(2)	9.0(B)	C318	0.768(1)	0.3651(10)	0.954(1)	5.0(4)
C113	0. 588(2)	0.8533(11)	0.692(2)	5.8(5)	NEN1	0.742(6)	0.063(4)	0.053(7)	36. (4)
C114	0. 623(2)	0.8552(12)	0. 596(2)	7.3(6)	CEN1	0.730(6)	0.034(4)	0.108(6)	25. (3)
C115	0.640(2)	0.9198(12)	0.486(2)	7.3(6)	CEN2	0.816(3)	0.010(2)	0.152(3)	12. (1)
C116	0.621(2)	0. 7800(13)	0.460(2)	7.7(6)	NEN2	0. 773(5)	0.020(4)	0.265(5)	30. (3)
C117	0.648(2)	0.0890(14)	0. 513(2)	8.5(7)	CEN3	0.058(7)	0.018(5)	0. 500(9)	36. (5)
C118	0.728(2)	0.130(2)	0. 575(3)	10.7(9)	NEN3	-0.023(7)	0.048(4)	0.492(7)	36. (4)

.

Distances, A									
Atoms	đ	Atoms	d	Atoms	đ				
1-2	3.270 (2)	3-6	3.060 (2)	8-7	2.949 (2)				
3-4	3.309 (2)	1-5	2,938 (2)	1-9	2.943 (2)				
6-8	3.315 (2)	2-5	2,923 (2)	2-9	2.956 (2)				
1-4	3.090 (2)	6-5	2.977 (2)	3-9	2.959 (2)				
1-8	3.050 (2)	8-5	2.943 (2)	4-9	2.926 (2)				
4-8	3.058 (2)	3-7	2,949 (2)	5-7	4.831 (2)				
2-3	3.059 (2)	4-7	2,929 (2)	5-9	4.830 (2)				
2-6	3.034 (2)	6-7	2.940 (2)	7-9	4.802 (2)				

Table 18. Distances, bond angles, and dihedral angles in the Sn_9^{3-} anion

Bond angles, deg								
Atoms	Angle	Atoms	Angle	Atoms	Angle			
2-1-4	89,42 (4)	4-1-9	57.96 (4)	3-4-7	56.03 (4)			
2-1-8	89.46 (5)	5-1-8	58.84 (4)	3-4-9	56.26 (4)			
1-2-3	91.30 (5)	3-2-9	58.90 (4)	5-6-8	55.46 (4)			
1-2-6	91.38 (5)	5-2-6	59.93 (5)	7-6-8	55.88 (4)			
2-3-4	89.23 (4)	2-3-9	58.82 (4)	5-8-6	56.44 (4)			
4-3-6	89.86 (5)	6-3-7	58,56 (5)	6-8-7	55.62 (4)			
1-4-3	90.03 (4)	1-4-9	58.51 (4)	1-5-8	62.47 (5)			
3-4-8	90.24 (5)	7-4-8	58.98 (5)	2-5-6	61.89 (5)			
2-6-8	88.90 (5)	2-6-5	58.18 (4)	3-7-6	62.60 (5)			
3-6-8	90.10 (5)	3-6-7	58.84 (5)	4-7-8	62.70 (5)			
1-8-6	90.26 (5)	1-8-5	58.69 (4)	1-9-4	63.53 (4)			
4-8-6	89.79 (5)	4-8-7	58.32 (4)	2-9-3	62.28 (4)			
4-1-8	59.75 (4)	2-1-5	55.86 (4)	1-5-2	67.83 (5)			
3-2-6	60.29 (4)	2-1-9	56.52 (4)	6-5-8	68.10 (5)			
2-3-6	59.46 (4)	1-2-5	56.31 (4)	3-7-4	68.52 (5)			
1-4-8	59.48 (4)	1-2-9	56.14 (4)	6-7-8	68,50 (5)			
2-6-3	60.26 (4)	4-3-7	55.45 (4)	1-9-2	67.33 (4)			
1-8-4	60.77 (4)	4-3-9	55.31 (4)	3-9-4	68.43 (5)			
1-0-4	00.// (4)	4-3-9	55.31 (4)	3-9-4	68.43			

Dihedral angles ^a , deg								
Plane l	Plane 2	Angle	Plane 1	Plane 2	Angle			
(1-4-8)	(2-3-6)	179.1	(1-2-5)	(3-4-7)	42.4			
(1-4-8)	(5-7-9)	179.6	(1-2-9)	(6-8-7)	42.2			
(2-3-6)	(5-7-9)	179.2	(3-4-9)	(6-8-5)	42.5			
(1-2-5)	(1-2-9)	17.5	(1 - 2 - 3 - 4)	(3-4-8-6)	59.5			
(3 - 4 - 7)	(3 - 4 - 9)	18.1	(1-2-3-4)	(1-2-6-8)	60.0			
(6-8-5)	(6-8-7)	17.4	(1-2-6-8)	(3-4-8-6)	60.5			
(1 - 4 - 8)	(1 - 4 - 9)	40.4	(1-4-8)	(1-2-3-4)	89.4			
(1 - 4 - 8)	(1-8-5)	40.9	(1-4-8)	(1-2-6-8)	90.7			
(1 - 4 - 8)	(4-8-7)	41.0	(1-4-8)	(3-4-8-6)	91.1			
(2-3-6)	(2-3-9)	40.8	(2-3-6)	(1-2-3-4)	90.0			
(2-3-6)	(2-6-5)	40.2	(2-3-6)	(1-2-6-8)	89.6			
(2-3-6)	(3-6-7)	42.4	(2-3-6)	(3-4-8-6)	89.8			

.

Table 18. Continued

^aFor planes (1-2-3-4), (1-2-6-8) and (3-4-8-6) the atoms are within 0.008, 0.0004, and 0.007 Å of their respective, best least-squares plane.

.

Figure 8. Approximate [001] view of the unit cell of (2,2,2-crypt-K⁺)₃Sn₉³⁻•1.5en. For clarity, crypt carbon atoms are not included, and the N-K-N axes are differentiated

Figure 9. Two views of the Sn_9^{3-} anion

The unit cell contains six crypt-K⁺ cations, two $\operatorname{Sn_9}^{3-}$ anions, and three ethylenediamine molecules (one sits on an inversion center) as seen in Figure 8. Except for the difference in anions, this salt is isostructural with $(2,2,2-\operatorname{crypt}-K^+)_3(\operatorname{TkSn_8}^{3-}\operatorname{TkSn_9}^{3-})_1 \cdot \operatorname{en.}^{28}$ It is indeed remarkable that the anion cavity defined by the crypt-K⁺ cations can on the one hand be so unspecific that it can accommodate three different anions and on the other hand so specific that at least seven of the atoms in each cluster are in essentially identical positions. There is probably no significant interaction between the anion and the en molecules or crypt cations; the shortest contacts are Sn8 to NEN2, 3.71 (8) Å and Sn7 to C316, 3.78 (2) Å. For Sn-N the sum of van der Waals radii is 3.7 Å.^{69} Also, the en molecules themselves are not in close enough proximity for any hydrogen bonding, unlike those seen in $(2,2,2-\operatorname{crypt-}_{K^+)_3 \operatorname{Sb}_7^{3-} \cdot \operatorname{2en}^{23}$ The 2,2,2-crypt-K⁺ cations have normal conformations.

Anion charge assignment

The assignment of the 3- charge to the Sn_9 cluster is derived primarily from the three to one crypt-K⁺ to anion ratio. The anion exhibits relatively small and spherical thermal ellipsoids; this is unlikely to be the case if Sn_9^{2-} (D_{3h}) and Sn_9^{4-} (C_{4v}) were equally disordered on the same site (even if both were to occur in D_{3h} configurations the trigonal prismatic atoms should overlap poorly as is discussed later). In any event, the 3- charge necessitates a paramagnetic species and both ESR and magnetic susceptibility studies confirm the paramagnetic character of this compound. ESR results

ESR measurements were made for a variety of samples, as shown in Table 19. Figure 10 presents several representative spectra (they are not drawn to the same scale in terms of intensity). Even in solution the resonances are fairly broad, and no clear evidence of hyperfine coupling to the two tin nuclei with I = 1/2 (117 Sn, 7.7% and 119 Sn, 8.7%) was observed, although at low temperatures there are some weak unexplained inflections between the two main signals in the bulk product spectrum, but these may be due to possible impurities or the lack of complete randomness in this sample. However, they might also be the result of hyperfine coupling; at 5 K the ESR spectrum for phase III in the Na-Ge system (see Experimental) which may contain the analogous Ge_q^{3-} anion shows similar weak inflections, but there are many more (>15), which would be appropriate since the only active isotope for germanium has I = 9/2 (⁷³Ge, 7.8%). The fact that the ESR signal is retained in solution and is dependent on orientation for a 'single' crystal is evidence of a distinct paramagnetic species. Above about 150 K, the spectra of the first three samples have essentially two g values (g_{||} \sim 1.97 and $g_1^{} \sim$ 2.07) which is appropriate for ${
m Sn_9}^{3-}$ as ideally it has axial symmetry. Below 150 K the bulk product and 'single' crystal spectra indicate g_1 may be slightly split; the anion is probably distorted somewhat from the ideal D_{3h} symmetry. As expected, the two g values for static samples coalesce to a single resonance (g \sim 2.035) for the solution samples which allow free rotation of the paramagnetic anion.

	Sample	Temperature (K)	Signal	g values
1.	Bulk product (reaction 3) ^a	5-292	strong, complex	1.92, 2.07
2.	Large 'single' crystal (reaction 3) ^b	4–298	strong	1.982, 2.076
3.	Crystals (reaction 3) dissolved in en (frozen solution)	200– 250	strong	1.978, 2.075
4.	Crystals (reaction 5) dissolved in en, decanted	298	very weak ^C	2.03
5.	KSn ₂ + crypt + en, solution decanted after 3d	298	weak ^C	2.035
6.	Sn metal	298	none	
7.	KSn ₂ alloy	298	none	
8.	en (solvent)	298	none	

Table 19. ESR measurements for $(2,2,2-crypt-K^{\dagger})_3 \operatorname{Sn}_9^{3-} \cdot 1.5 \operatorname{en}$

^aNot finely powdered.

^bCrystal was in no particular orientation, signal appearance changes with a change in orientation. The crystal is probably not truly single.

^CThe weakness of the solution signals may be due in part to the necessity of using capillary tubes because of the solvent's high dielectric constant.

Figure 10. ESR spectra for (2,2,2-crypt-K⁺)₃Sn₉³⁻•1.5en: top, 'single' crystal (sample 2, see Table 19) at 9.5935 GHz; middle, frozen en solution (sample 3) at 9.5934 GHz; bottom, solution of KSn₂ + crypt in en (sample 5) at 9.7592 GHz

Magnetic susceptibility

Results of magnetic susceptibility measurements on the bulk products of two of the KSn_2 + crypt reactions that produced $(2,2,2-crypt-K^+)_3 - Sn_9^{3-} \cdot 1.5$ en are listed in Table 20. The data were corrected for the estimated diamagnetic effects of the atomic cores $(H,C,N,0,K^+ \text{ and } Sn^{2+})^{70,71}$ and for the 21 delocalized cluster electrons.⁷⁰ The inconsistency of the two samples is probably due to a lack of precision associated with the small sample sizes (possible error of 3-5%) and the likelihood of impurities or decomposition.

The question of the purity of these two samples is rather difficult to address. Visually, the samples appeared reasonably homogeneous although there is certainly small amounts of elemental tin, and perhaps alloy and excess crypt present; however, the Sn_q^{3-} phase (V) and phase IV (the primary product from reaction 4) in this system are not readily distinguishable by eye. It should be noted that recrystallization of the products is generally not a viable option - in this case phase VI (Sn_9^{4-}) would be the likely result. Guinier powder patterns of the products of reaction 3, 4 and 5 were taken, but the multitude of weak, very low angle lines makes it difficult to draw any firm conclusions. Although many lines were similar, all three patterns were different. Probably all three products are inhomogeneous; however, the pattern for the reaction 3 product apparently matches a calculated pattern for Sn_0^{3-} better than that from reaction 5. The reaction 5 magnetic susceptibility sample was the one analyzed by atomic absorption as having exactly a 3Sn:1K mole ratio, but this only suggests that any other phase present

	Sample 1	Sample 2
Product from reaction	3	5
Sample weight (mg)	37.9	79.0
Temperature (K)	296 → 100	296 → 93
χ ₂₉₆ (emu/mol) ^a	5.45×10^{-3}	2.91x10 ⁻³
Curie plot (χ vs $^{1/}$ T)		
R ^b	0.9965	0.9983
μ _{eff} (BM)	1.383 (12)	1.054 (8)
X _{TIP} (emu/mol)	$4.74(1) \times 10^{-3}$	$2.473(8) \times 10^{-3}$
Curie-Weiss plot ($^{1/}\chi$ vs T)		
R	0.9891	0.9795
θ	-579 (12)	-508 (19)

Table 20. Magnetic susceptibility data

^aAfter diamagnetic correction, -1.43x10⁻³ emu/mol.

^bLinear correlation coefficient.

(probably phase IV) must have a similar ratio. Perhaps phase IV is simply $(crypt-K^+)_6 Sn_9^{2-}Sn_9^{4-}$ with more solvent molecules than normal to account for the very large volume per crypt, rather than the previously postulated $(crypt-K^+)_7 Sn_9^{3-}Sn_9^{4-}$. Certainly, the presence of impurities or other phases will greatly influence the magnetic susceptibility results. Both samples exhibit linear Curie law behavior, as shown in Figure 11 for sample 1. It is not clear why the intercept (X_{TIP}) should be so far from zero. Curie-Weiss plots are not as satisfactory, as they are much less linear and give very large Weiss constants (θ). It would be surprising if there is actually significant interaction between spins or neighboring clusters as these Weiss constants would suggest, since the anions are separated by the very large crypt cations. The important fact is that the compound is clearly paramagnetic with an effective magnetic moment of approximately 1.38 BM (assuming sample 1 is of higher purity). This value is appropriate for the expected one unpaired electron per mole, although it is admittedly low compared to the spin only value of 1.73 BM.

NMR results

The reaction of the KSn₂ alloy with 2,2,2-crypt has also been investigated by ¹¹⁷Sn and ¹¹⁹Sn solution NMR.⁷² Two spectra are shown in Figure 12. Reaction conditions used were similar to those known to produce the Sn₉³⁻ phase, that is, decanting the solution after several days over the alloy residue. With ethylenediamine as the solvent, an extremely broad (fwhm \sim 1100 Hz) resonance was observed, at a chemical shift appropriate for the Sn₉⁴⁻ anion (δ = -1230 ppm and J = 254 Hz for Na-Sn solutions without crypt³⁴ but these values vary slightly with different solvents or cations⁶³). No fine structure was evident. Since ethylenediamine freezes at only 8°C, reactions in liquid ammonia were also examined as this solvent allows temperatures down to -78°C. In

Figure 11. Magnetic susceptibility for $(2,2,2-crypt-K^+)_3 Sn_9^{3-} \cdot 1.5 en$ (sample 1) as χ_{corr} vs. 1/T

Figure 12. ¹¹⁷Sn NMR spectra (note difference in abscissa scale)

sharp contrast, the signal observed in liquid ammonia is the characteristic Sn_9^{4-} multiplet, 33,34 a singlet (through intramolecular exchange) split by 117 Sn - 119 Sn coupling. Presumably, the broadening of the signal in ethylenediamine arises from the presence of the paramagnetic Sn_9^{3-} anion, which is not obtained in $\text{NH}_3(\ell)$ under similar conditions.

Anion configuration

The nonastannide(3-) anion has a tricapped trigonal prismatic geometry which deviates very little from the ideal D_{3h} symmetry (Figure 9) considering the fact that the site symmetry is only C_1 . The bond distances and angles are quite regular; differences between equivalent values are relatively small, though admittedly large compared with the low standard deviations (Table 18). One height of the trigonal prism is about 0.04 Å shorter than the other two but this is probably unimportant. The Sn_9^{3-} cluster has average bond distances of 3.298 Å, 3.058 Å, and 2.944 Å for the height (h) and edge (e) of the trigonal prism and from the prismatic to the capping (c) atoms, respectively.

A comparison of dihedral angles provides the most useful means of distinguishing D_{3h} and C_{4v} configurations for nine-atom clusters, as is shown in Table 21. Sn_9^{3-} is obviously D_{3h} with a dihedral angle of 179.1° for opposed trigonal prism faces, and average values of 17.7° for vicinal cap to cap faces and 41.0° for vicinal prism end to cap faces. These latter two categories of dihedral angles do show significant variation even among the relatively nondistorted D_{3h} species; most noticeable

D _{3h} Type faces		Trigonal prism,	Ca	ap to cap,				Prism en	d to cap		
	_	(opposed)	•	(vicinal)				(vic	inal)		
D _{3h} Example (Figure 9)		1-4-8,2-3-6	5-6-8,6-7-8			2-3-6,2-5-6					
D _{3h}	B19 ⁵⁺	180		22 (x3)				4	3 (x6)		
D _{3h}	529 ³⁻	179	17	18 1	.8	4	0 40	41	41	41	42
c _{2v} (d _{3h} ^a)	TLSn8 ³⁻	177	16	17 ^b 1	і _в	3	5 ^b 36 ^b	41	41	42	42
∿D _{3h}	Sng ^{4- c}	173	21	25 1	.6	4	2 41	41	 52	46	47
c _{2v}	Geg ²⁻	1 171	8	25 2	1	31	B <u>36</u>	44	47	45	45
∿C _{4v}	Ge9 ⁴⁻	162,156	 5	32	24	32	33	51	[54	53	51
∿C _{4v}	Sng ^{4- c}	164,157	 2	30	28	34	33	52	50	46	54
C _{4v}	Sng ^{4- d}	158,158	3	 30	29	 29	32	52	 53	5 4	55
C _{4v}	Type faces	waist, opposed	base	Ca	p to wai	st, vici	nal	wais	t to wai	st, vici	nal

Table 21. Some dihedral angles (δ , degrees) in nine-atom polyhedra

.

^aIgnoring thallium atom. ^bDefining planes contain one thallium atom, which effectively reduces δ relative to homoatomic species. ^CDisordered anion in (2,1,1-crypt-Li⁺)₄Sng⁴⁻. ^d2,2,2-crypt-Na⁺ salt.

is the difference between the average values for Sn_9^{3-} , 17.7° and 41.0°, and those for Bi $_9^{5+}$ (C $_{3h}$ site symmetry), 22° and 43°, respectively. This is not an indication of distortion, but is due strictly to variations in the h:e:c ratios among these D $_{3h}$ species. The vicinal cap to cap angle is sensitive to changes in the h:c ratio, while the vicinal prism end to cap angle correlates linearly with the h:e ratio.

Correlation of the h:e ratio to electron count

The ${\rm Bi_9}^{5+}$ ion has long been something of an anomaly because it has seemingly two electrons more than required for the closo ${\rm D_{3h}}$ geometry it adopts, in contrast to the isoelectronic ${\rm Sn_9}^{4-}$ and ${\rm Ge_9}^{4-}$ anions which have the expected nido ${\rm C_{4v}}$ configuration for 22 skeletal electrons. Some explanations of this exception to Wade's rules have noted the elongation of the trigonal prism in ${\rm Bi_9}^{5+}$ compared to the 20-electron species ${\rm B_9H_9}^{2-}$, and related it to the high cationic charge of ${\rm Bi_9}^{5+}$ and consequently poorer orbital overlap. 73,74 It is now clear that the height to edge ratio (h:e) of the trigonal prism has a direct correlation with electron count for ${\rm D_{3h}}$ nine-atom clusters; this is directly related to the character of the molecular orbital involved (the LUMO for 20-electron and the HOMO for 21- or 22-electron species). 20,75,76

Table 22 lists the characteristic distances and h:e ratios for known D_{3h} nine-atom species. The 20-electron clusters have a height to edge ratio of about 0.99. The values for Ge_9^{2-} and $B_7H_7C_2(CH_3)_2$ are probably less representative as the former is quite distorted and the latter may be affected by the two C-CH₃ units. The h:e ratio for

Cluster	Skeletal e's	h ^a	е	с	h:e	Ref.
Bi ₉ 5+	22	3.74	3.24	3.09	1.15	61
Sn ₉ ^{4- b}	22	3.54	3.02	2.93	1.17	this work
5n9 ³⁻	21	3.30	3.06	2.94	1.08	20, this work
TlSn ₈ ³⁻	20	3.16 ^c	3.12	2.96 ^c	1.01 ^c	28
_{в9} н9 ²⁻	20	1.84	1.90	1.71	0.97	77
^в 7 ^н 7 ^с 2 (сн3) ₂ 20	1.77	1.97	1.70 ^d	0.90	78
Ge9 ^{2- e}	20	2.83 ^e	2.67	2.56	1.06 ^e	22

Table 22. D_{3h} nine-atom clusters

^aHeight (h), edge (e) and capping (c) distances in Å.

^bThis anion occurs in both D_{3h} and C_{4v} conformations disordered on the same site in (2,1,1-crypt-Li⁺)₄Sn₉⁴⁻.

^cThe long height and four capping distances involving disordered atoms 6 and 8 were omitted in the calculation; otherwise the values are h=3.21, c=2.93, and h:e=1.03. (Capping distances to TL are of course not used.)

^dCapping distances to C are not included.

^eBadly distorted to C_{2v} symmetry. One long height was omitted; otherwise the values are h=2.94 and h:e=1.10.
22-electron species is about 1.16. Again, the Sn_9^{4-} value may be somewhat unreliable because of disorder. Curiously, this value compares well with the h:e ratio of 1.17 for a points on a sphere calculation, with relative values h = 1.42, e = 1.22 and c = 1.14 for a sphere of radius 1.00.⁷⁹ Of course, this calculation assumes repulsion between ligands for centered ML₉ type clusters, not bonding atoms as is the case here. The h:e ratio of 1.08 for the 21-electron Sn_9^{3-} is exactly intermediate between that for 20- and 22-electron clusters, which is further confirmation of the correctness of the charge assignment. Note also the trends in h, e and c distances for the three tin species. (The capping distance c is always shorter than h or e because the capping atom has the lower connectivity.) Interestingly, the same elongation trend is observed for actual trigonal prismatic species; h:e for Te₆⁴⁺ (20 electrons) is 1.17 compared to 1.01 for hexamethyl prismane (18 electrons).⁷³

Molecular orbital calculations

Semiempirical energy calculations support these conclusions about the relationship between the electron count and the tricapped trigonal prism dimensions for nine-atom clusters. Extended Hückel molecular orbital (EHMO) calculations were performed for Sn_9^{2-} , Sn_9^{3-} , Sn_9^{4-} and Bi_9^{5+} in various configurations. Previous molecular orbital calculations for nine-atom clusters have included extended Hückel results for Bi_9^{5+} , ⁸⁰ $\text{B}_9\text{H}_9^{2-77}$ and Sn_9^{4-} ; ⁷³ both normal and relativistically parameterized extended Hückel calculations for Ge_9^{2-} , Ge_9^{4-} , Sn_9^{4-} , Pb_9^{4-} and Bi_9^{5+} ; ⁸¹ a graph theory topological approach for these same five ions;⁷⁴ and SCF-MO-CNDO results for Sn_9^{4-} ,²¹ Ge_9^{2-} and Ge_9^{4-} ,²² All except the first have addressed the relative stability of $\text{D}_{3\text{h}}$ versus $\text{C}_{4\text{v}}$ configurations to some extent. However, the effect of trigonal prism elongation for the $\text{D}_{3\text{h}}$ configuration has never been thoroughly examined. It should be noted that CNDO molecular orbital calculations are not successful for Sn_9^{3-} in any configuration or for Sn_9^{2-} in the $\text{C}_{4\text{v}}$ configuration because of the open shell character; the extra electron in Sn_9^{3-} is simply ignored, and self-consistency for the $\text{C}_{4\text{v}}$ Sn_9^{2-} anion cannot be obtained. The extended Hückel approach is therefore preferred here.

The EHMO program⁸² as obtained from E. R. Davidson of the University of Washington allows the use of up to three mirror planes in the molecule and involves an iterative procedure to obtain self-consistent charge density, which produces more reasonable HOMO-LUMO energy gaps and charge distributions than some noniterative EHMO procedures.⁸³ The parameters and idealized cluster geometries used in the calculations are summarized in Table 23 and 24, respectively, while the results are presented in Table 25 and Figure 13.

Comparing the total (one-electron) energies in Table 25, the most stable configurations are indeed the expected ones. Of course, some of the differences in energy are small (<0.5 eV) and may be partially influenced by the actual choice of distances; however, the general trends are certainly real. Of the three D_{3h} geometries, the 1% elongation is favored for Sn_9^{2-} , the 8% elongation is marginally better for Sn_9^{3-} , and the 15% elongation is better for both Sn_9^{4-} and Bi_9^{5+} . For Sn_9^{2-} or

		VOIE (eV) ^b					
	zeta ^C	Sn	Sn ^O	Sn ⁺			
Sn 5s	2.13	-7.14	-14.23	-22.78			
Sn 5p	1.62	-1.26	- 7.01	-14.98			
			Bi ^o	Bi ⁺			
Bi 6s	2.56		-16,56	-26.86			

Table 23. EHMO parameters^a

2.01

Ві бр

^aThe Wolfsberg-Helmholtz interaction constant, K, was taken to be 1.89 for all orbitals.

^bValence orbital ionization energy, calculated as in reference 84 from ionization potentials and atomic spectra energy levels (reference 85) and the electron affinity for Sn (reference 86).

- 8.14

^COverlap orbital exponent, reference 87.

-15.60

Ъ	Distances ^a (Å)								
Geometry	Sn ₉ ^{x-}	Bi ₉ 5+							
^D 3h 1%	3.159, 3.121, 2.960 [°]	3.434, 3.393, 3.094 ^d							
D _{3h} 8%	3.298, 3.058, 2.945 ^e	3.580, 3.320, 3.094 ^d							
D _{3h} 15%	3.447, 2.990, 2.930 ^f	3.737, 3.241, 3.094 ^e							
c _{4v}	2.956, 3.242, 2.971, 2.964 ^e	3.154, 3.459, 3.170, 3.163 ⁸							

Table 24. Distances in idealized polyhedra used in EHMO calculations

 $^{a}D_{3h}$ distances: h, e, c (see text); C_{4v} distances: capping atom to capped face, within capped face, capped face to base, within base.

^bWith percent elongation of the trigonal prism.

^cBased on TLSn₈³⁻.

 d Only h and e changed from observed Bi₉⁵⁺ proportions to give appropriate percent elongation.

^eObserved geometry.

^fBased on the D_{3h} Sn₉⁴⁻ as found in the 2,1,1-crypt-Li⁺ salt but with a 15.3% elongation as in Bi_9^{5+} .

 $g_{\text{Proportioned as in Sn}_{9}}^{4-}$.

Cluster	Geometry	Total energy (eV)	HOMO-LUMO gap (eV)
Sn ₉ ²⁻	D _{3h} 1% ^a	-365.68	1.58
	^D 3h 8%	-365.49	1.15
	^D 3h 15%	-364.97	0.54
529 ³⁻	^D 3h ^{1%}	-338.25	4.12
	^D 3h 8%	-338.47	4.30
	D _{3h} 15%	-338.45	4.30
	с _{4v}	-336.86 ^b	4.55 ^b
	$C_1(v_{3h})^c$	-338.48	4.20
5n9 ⁴⁻	D _{3h} 1%	-309.94	3.60
	^D 3h 8%	-310.48	3.75
	^D 3h 15%	-310.82	3.74
	C _{4v}	-311.78	4.02
	c ₁ (∿c _{4v}) ^c	-311.70	3.79
5+ Bi ₉	^D 3h 1%	-737.94	5.63
	D _{3h} 8%	-739.16	5.77
	D _{3h} 15%	-740.06	5.61
	C _{4v}	-739.99	6.59

Table 25. EHMO calculations

^aPercent elongation of the trigonal prism. ^bOne cycle only (will not iterate to a consistent charge density). ^CActual geometry found from the crystal structure solution.

Figure 13. EHMO orbital energies. Arrows denote the HOMO and its occupancy in each case

 ${\rm Sn_9}^{3-}$, a ${\rm C_{4v}}$ configuration is not feasible as it would require a partially filled, degenerate HOMO level, e² or e³, respectively. The ${\rm C_{4v}}$ geometry for ${\rm Sn_9}^{3-}$ is apparently of much lower stability anyway. For ${\rm Sn_9}^{4-}$, the ${\rm C_{4v}}$ configuration is calculated to be more stable than the 15% elongated D_{3h} geometry by 1.0 eV. However, Bi₉⁵⁺ is apparently marginally more stable in the 15% D_{3h} configuration (by only 0.1 eV), which does agree with observation.

The HOMO-LUMO gaps in general parallel the total energy trends, although all the C_{4v} configurations have larger gaps than the corresponding D_{3h} ones. (For ${\rm Sn_9}^{3-}$ the HOMO is of course only partially filled; so properly speaking, the gap energy should be 0.0 eV.) The energy level diagram for ${\rm Sn_9}^{2-}$ is rather unusual with the surprisingly small HOMO-LUMO gap (1.6 eV) followed by a very large energy separation (4.6 eV) between the LUMO and the second-lowest unoccupied orbital. This may be an indication of low stability for this anion, which has yet to be isolated. (There is a second-hand mention of a ¹¹⁹Sn solution NMR signal extremely far downfield from Me₄Sn ($\delta \approx$ +2700 ppm) attributed to ${\rm Sn_9}^{2-}$, and a report of a crystalline compound which by analysis was ${\rm Li}_2{\rm Sn_9} \cdot 2.5{\rm en.}^{63}$)

The elongation of the trigonal prism for D_{3h} clusters upon successive reduction can be readily understood upon examination of the molecular orbital involved, the LUMO for 20-electron or the HOMO for 21- or 22-electron species. This orbital is of a_2 '' symmetry (with mainly p_2 atomic orbital contributions) and is strongly σ antibonding along the height, pi bonding for the edges, and weakly bonding to the capping

(A previous molecular orbital calculation for Bi_0^{5+80} is in atoms. agreement in this respect; however, Wade and O'Neill⁷⁶ believe (for unspecified reasons) that the contribution of the capping atom p, orbitals is reversed, so that this a2" orbital would instead be antibonding to the capping atoms, and overall show net antibonding.) Therefore, the increase in h:e observed upon occupation of this orbital with one or two electrons arises from not only an increase in the height, but partly from a decrease in the edge length of the trigonal prism. These trends are exactly what is found when tin distances for TLSn_{R}^{3-} , ${\rm Sn_{Q}}^{3-}$, and ${\rm Sn_{Q}}^{4-}$ are compared (Table 22). There is little change in the capping distance for these three clusters; the slight decrease observed may be artificial. The addition of electrons to the a₂'' orbital might be expected to shorten the capping distance because of the weakly bonding character; however, this is essentially negated by a corresponding decrease in the amount of capping atom p_z atomic orbital participation upon trigonal prism elongation.

There is no disagreement as to the a_2 '' character of the LUMO for 20 skeletal electron D_{3h} clusters (except as to whether the capping distance is bonding or antibonding). However, while the HOMO found here and in other EHMO calculations^{73,81} is of e' symmetry, CNDO and some EHMO calculations^{77,80} indicate an a_2 ' symmetry. In this latter case, the a_2 ' orbital is bonding for the height and antibonding for the trigonal prism edges, so one would expect a similar prism elongation upon <u>removal</u> of two electrons.^{75,76} This in fact occurs for B_9Cl_9 which is formally an 18-electron species (h = 2.08 Å, e = 1.80 Å, c = 1.75 Å, and h:e = 1.16), 75 , 88 although the back-bonding effect of the chlorine ligands cannot be ignored.

For the 22 electron species Bi_9^{5+} and Sn_9^{4-} these EHMO results do actually agree with the observed configurations, although differences in the total energy are small. It is clearly evident that the elongation of the trigonal prism not only allows the accommodation of the extra two electrons, but also produces a D_{3b} configuration which is of at least similar stability to that for the C_{4v} geometry. Also the change from Sn_9^{4-} to Bi_9^{5+} increases the relative stability of the D_{3h} configuration. Other molecular orbital calculations^{21,73,81} also predict a minimal difference in energy between $C_{4\nu}$ and D_{3h} geometries, suggesting there is a very low barrier to interconversion. Sn_9^{4-} is certainly fluxional in solution as demonstrated by 119 Sn NMR. 33 Also, while Sn ${}^{4-}_{9}$ is of approximate C_{4v} geometry in $(crypt-Na^+)_4Sn_9^{4-}$ and also in the unusual salt $(crypt-K^+)_3(KSn_q)^{3-}$ which has infinite chains - K^+ - Sn_q^{4-} - K^+ - Sn_9^{4-} - running through the cell,¹⁸ the anion seems to occur in both D_{3h} and C_{4v} geometries (disordered) in (2,1,1-crypt-Li⁺)₄Sn₉⁴⁻. Similarly, Bi_9^{5+} is essentially D_{3h} in the salt $Bi_9^{5+}Bi^+(HfCl_6^{2-})_3^{61}$ (the site symmetry is C_{3h}), but is about 25% distorted toward C_{4v} (via C_{2v}) in $Bi_{12}Cl_{14}$.⁸⁹ Dipole effects²² and solid state packing forces probably are of importance in the relative stability of the two configurations.

The calculated charge distributions for the four clusters are given in Table 26. There are no real surprises, with the atoms of higher connectivity having the more positive charge. The charge separations are however, much smaller (and more reasonable) than those obtained

Cluster	Geometry	Charges
Sn ₉ ²⁻	D _{3h} 1%	prism = -0.21 cap = -0.24
5n9 ³⁻	D _{3h} 8%	prism = -0.32 cap = -0.36
Sn ₉ ⁴⁻	C _{4v}	apex = -0.44 waist = -0.41 base = -0.48
Bi ₉ 5+	^D 3h ^{15%}	prism = +0.57 cap = +0.52

Table 26. Calculated charge distributions

through CNDO calculations. Also, for the $C_{4v} \operatorname{Sn_9}^{4-}$ anion the base atoms here have the most negative character in contrast to CNDO calculations which put the highest negative charge on the apex atom.²¹

Conclusions

The synthesis of ${\rm Sn_9}^{3-}$ was certainly unexpected, both because it was a new tin anion and because of its open shell, paramagnetic character. The previous investigations 19,21 of Na-Sn alloy reactions produced only two compounds, $({\rm crypt-Na^+})_4 {\rm Sn_9}^{4-}$ and $({\rm crypt-Na^+})_2 {\rm Sn_5}^{2-}$. As was observed in the antimony system, the subtle switch from sodium to potassium alloys has served here to allow isolation of new anions. The compositions of the other two products of the reaction of KSn₂ are as yet unknown (phase IV and VI, see Experimental), so it is difficult to speculate on the course of the reaction. If phase VI does contain ${\rm Sn_9}^{4-}$ as expected, it would seem that the presence of alloy residue causes eventual reduction of ${\rm Sn_9}^{3-}$ to ${\rm Sn_9}^{4-}$ (presumably the more stable anion) with corresponding formation of tin metal. If this is the case, one might expect phase IV to contain a more oxidized anion such as ${\rm Sn_9}^{2-}$ since this compound formed when reaction times were short; however, the unit cell dimensions seem to point to a mixture of ${\rm Sn_9}^{4-}$ and ${\rm Sn_9}^{3-}$ in phase IV.

 ${\rm Sn_9}^{3-}$ is unique as a paramagnetic Zintl anion with an odd total number of electrons, but it is unlikely to be the only such exception; as previously mentioned, the isoelectronic ${\rm Ge_9}^{3-}$ anion may indeed exist. However, molecular orbital considerations indicate that it is the non-degenerate nature of the LUMO for the 20 skeletal electron nine-atom closo configuration which allows the accommodation of this extra electron. Therefore, the choice of possible configurations for odd-electron species is restricted to those with nondegenerate frontier orbitals; otherwise the degenerate open shell level would cause Jahn-Teller instability. For closo configurations, the only possibilities (besides a nine-vertex cluster isoelectronic to ${\rm Sn_9}^{3-}$) would be an eight-vertex dodecahedron or an eleven-vertex octadecahedron, 76 which have not as yet been observed for Zintl anions.

Incomplete Studies

The (2,2,2-crypt-Na⁺)₂Ge₄²⁻ structure

The final positional and thermal parameters for $(2,2,2-\text{crypt-Na}^+)_2$ - Ge_4^{2-} are listed in Table 27, while distances and angles for this structure appear in Appendix A. Figure 14 shows the Ge_4^{2-} anion as it occurs in the cell in two disordered images, each at 0.50 occupancy, related by the center of symmetry at the origin.

Atom	x	y y	2	B11	B22	B33	B12	B13	B23
a Gel	0.1539(5)	0. 0346(6)	0.0534(4)	9.3(3)	11.6(3)	9.8(3)	5.1(2)	0. 7(2)	0.8(2)
Ge2	0. 0000	0. 0000	0. 1537(8)	12.4(4)	12.4	10. 2(5)	6. 2	0. 0	0. 0
Na	0. 3333	0. 6667	0.4034(6)	4.9(2)	4. 9	3. 9(3)	2. 5	0. 0	0. 0
01	0. 1154(8)	0. 6240(8)	0.2781(6)	6.0(4)	6.2(4)	3.1(3)	3. 6(3)	0.1(3)	0.1(3)
02	0.1963(7)	0. 7566(8)	0. 4996(6)	4.1(3)	6.1(4)	2.8(3)	2. 5(3)	0.1(2)	0.2(3)
N1	0. 3333	0. 6667	0. 1135(13)	5.4(5)	5.4	3.1(6)	2. 7	0. 0	0. 0
N2	0. 3333	0. 6667	0.6552(12)	4.0(4)	4 . O	3.2(6)	2.0	0. 0	0. 0
C 1	0.2125(11)	0.6700(12)	0.0725(9)	4. 5(5)	6.2(6)	3.0(4)	2. 5(4)	-0.4(4)	0.0(4)
C2	0.0923(13)	0. 5826(14)	0. 1513(9)	5.6(6)	7.6(7)	2.9(4)	2.8(5)	-1.1(4)	-1.8(4)
CЗ	0. 1227(13)	0.7521(12)	0.2977(10)	6.4(6)	5. 5(6)	4.6(5)	3.4(5)	-0.5(5)	-0.8(4)
C4	0.0917(11)	0.7570(13)	0.4315(10)	4.8(5)	6.9(6)	4.0(5)	3. 5(5)	-1.4(4)	-0.6(4)
C5	0.1546(10)	0.7274(12)	0.6234(8)	4. 2(5)	6.3(6)	2.8(4)	2. 5(4)	0.3(3)	0.0(4)
C6	0. 2789(12)	0.7533(12)	0. 6978(9)	5.6(6)	5.5(5)	3.2(4)	3. 2(5)	0.0(4)	-0.2(4)

Table 27. Positional and thermal parameters for (2,2,2-crypt-Na) Ge

a Ge atoms are at 0.50 occupancy. 105

Figure 14. The Ge_4^{2-} anion showing both 0.50 occupancy tetrahedra with C_3 axis vertical

The two inversion-related crypt-Na⁺ cations have three-fold symmetry with axes at 1/3,2/3,z and 2/3,1/3,-z; their configuration and packing is nearly identical to that in the middle half of the $(2,2,2-crypt-Na^+)_2$ -Pb₅²⁻ structure¹⁹ (P3cl with a doubled c axis). The sodium atom is similarly off the midpoint of the N-N axis by 0.21 Å; this is an indication of the extent the Na⁺ ion is undersized for the 2,2,2-crypt cavity.

The $\text{Ge}_4^{2^-}$ anion is essentially tetrahedral, only slightly elongated to $\text{C}_{3\text{v}}$ symmetry, with bond distances of 2.769 (8) Å between basal atoms and 2.793 (9) Å for basal to apex atoms. The two $\text{Ge}_4^{2^-}$ images actually combine to give a fairly regular cube with distances between the two of 1.987 (7) and 1.946 (7) Å. In spite of the high agreement factors (R = 0.170), the standard deviations for bond distances in this structure are very comparable to those in similar structures (the Ge-Ge distances are somewhat less precise but that is to be expected with the relatively small electron density at each position).

The Ge₄²⁻ anion as an 18-electron tetrahedral cluster is unusual but not unprecedented. Rudolph and coworkers have identified the analogous Sn₄²⁻ anion based on an NMR resonance in solutions of Na-Sn alloys in en.³⁵ It is interesting to note that Ge₄²⁻ is isoelectronic with the hypothetical $B_4H_4^{2-}$ anion. The Ge₄²⁻ anion with either exact T_d or C_{3v} symmetry would require two unpaired electrons in the highest e-orbital and should be first-order Jahn-Teller unstable; ESR measurements on this compound indicate no unpaired spin density. A study of Sn₄²⁻ by Rothman, Bartell and Lohr⁵⁹ using effective potential calculations predicts a minimum in total valence energy for a compressed tetrahedron (D_{2d}), and also predicts fluxional behavior, related to a second-order Jahn-Teller effect, through three compressed and three elongated tetrahedra (D_{2d}) . Since the crystal symmetry forces Ge_4^{2-} in this compound to have at least C_{3v} symmetry, the relatively large thermal ellipsoids observed and the left-over electron density near the cluster on a difference map may be the result of the occurrence of such D_{2d} structures in all their possible orientations, giving average tetrahedral symmetry.

The Ge-Ge bond distances (2.781 Å average) are also surprisingly long. Comparable distances in Ge₉⁴⁻ and Ge₉²⁻ average 2.623 and 2.649 Å, respectively;²² the tetrahedral cluster in the alloy NaGe which formally is Ge₄⁴⁻ has distances which average 2.56 Å.⁴¹ The 20-electron tetrahedral clusters $\text{Sn}_2\text{Bi}_2^{2-}$ and $\text{Pb}_2\text{Sb}_2^{2-}$ appear to have normal bond lengths; it is hard to understand why the 18-electron count for Ge₄²⁻ should result in bond lengths about 0.2 Å too long. However, the study by Rothman et al. does predict a similar lengthening of bond distances for Sn_4^{2-} (3.26 Å) compared to Sn_9^{4-} (3.02 Å) or Sn_5^{2-} (2.95 Å).

It is interesting that the alloy used in the reaction to produce this compound does contain tetrahedral Ge_4 units, formally with a 4charge, so the cluster unit seemingly remains intact. A 4- charge is according to experience too high for the cluster to retain in solution. It is unfortunate that the high agreement factors and disorder problems in this structure prevent a precise description of the Ge_4^{2-} anion; in actual fact one cannot be completely certain the anion is truly 'naked'. The isolation of this anion in a lower symmetry salt would be useful, though the known tendency of tetrahedral species toward disorder might still cause difficulty.

The (2,1,1-crypt-Li⁺)₄Sn₉⁴⁻ structure

Table 28 lists the positional and thermal parameters for $(2,1,1-\text{crypt-Li}^+)_4 \text{Sn}_9^{4-}$. The two (disordered 50:50) Sn_9^{4-} configurations A (C_{4v}) and B (D_{3h}) are shown in Figure 15 and 16, and distances are given in Table 29. Remaining distances for the crypt cations and angles for the structure appear in Appendix A.

There were several indications that the Sn_9^{4-} anion could be resolved into these two components. First, the distances and dihedral angles for the unresolved cluster imply a configuration about halfway between C_{4v} and D_{3h} symmetry. The most telling distances are the diagonals across what would be the basal square face of the C_{4v} configuration. The values are Sn1-Sn3 = 3.856 (7) Å and Sn2-Sn4 = 4.352 (7) Å. These should be equal for C_{4v} symmetry, while Sn1-Sn3 would be one height of the trigonal prism for D_{3h} symmetry. The most important dihedral angles are 169° between planes (1,5,6) and (3,7,8) which would be the opposed faces of the trigonal prism and 9° between planes (1,2,3) and (1,3,4) which are the vicinal triangles in what would be the square base of the C_{4v} configuration (see Table 21 for comparison). All these values are midway between those expected for D_{3h} and C_{4v} configurations. Secondly, some of the tin atoms in the unresolved cluster had wildly elongated 'thermal' ellipsoids suggesting positional disorder, and the elongation directions were correct for a C_{4v} - D_{3h} disorder.

Atom	X	y	Z	B11	B22	B 33	B12	B13	B23
Sn 1	0.3395(2)	0. 1912(1)	0. 7555(2)	3.8(2)	3. 9(2)	5.1(2)	0.4(1)	-1.8(1)	-0.8(2)
Sn2	0. 1557(2)	0.1879(1)	0.7002(3)	3.3(2)	3.1(2)	9. 7(3)	0.0(1)	-2.4(2)	0.6(2)
Sn8	0.2329(2)	0.0643(1)	0. 8274(2)	7.9(2)	3.0(2)	2. 9(2)	-0.1(2)	-1.1(1)	0.1(1)
รกวล	0. 1300(5)	0. 1349(3)	0.8434(3)	4.5(4)	8.4(5)	6.3(4)	2. 3(4)	0.0(3)	2.3(4)
Sn3B	0.1568(7)	0. 1424(2)	0.8686(6)	14. 9(8)	4.6(5)	6.2(5)	2.2(5)	5. 9(5)	-1.4(4)
Sn4A	0.3062(5)	0. 1392(2)	0.9019(4)	9.6(5)	5.3(4)	1.5(3)	-1.4(4)	-2.4(3)	~0.3(3)
Sn4B	0.3436(7)	0. 1259(3)	0.8888(6)	10.9(7)	14. 3(8)	9.9(6)	-9.2(6)	-8.0(5)	6.6(6)
Sn5A	0.4111(4)	0. 1111(2)	0. 7508(5)	2.1(3)	2.8(3)	9.8(5)	0.9(3)	-1.9(3)	1.3(3)
Sn5B	0.4095(5)	0. 1118(3)	0. 7150(7)	2.8(4)	5.8(5)	17. 9(9)	0.0(4)	-0.5(4)	-1.0(5)
Sn6A	0.3036(4)	0. 1460(2)	0. 5921(5)	4.4(3)	3.0(3)	6.0(4)	-0.7(3)	-0.2(3)	-1.0(3)
Sn6B	0. 2724(5)	0. 1464(2)	0. 5948(3)	10.3(5)	3. 5(3)	0. 7(2)	0.7(3)	-0.4(3)	1.1(2)
Sn7A	0. 1301 (4)	0. 1029(2)	0. 6649(5)	5.7(4)	1.6(3)	6. 5(4)	-1.4(3)	~5. 5(3)	0.2(3)
Sn7B	0 1066(5)	0. 1038(2)	0. 6979(6)	5.4(4)	3.2(4)	12.0(6)	0.8(3)	-2.8(4)	-0.3(4)
Sn9A	0.2970(4)	0.0622(2)	0.6417(4)	6.3(4)	1.7(3)	5.0(3)	0.0(3)	-1.4(3)	-0.6(3)
Sn9B	0.2658(5)	0.0620(2)	0. 6457(4)	7.3(4)	3.7(3)	1.7(3)	0.3(3)	0.4(3)	-0.3(3)
Atom	x	y	2	В	Atom	X	y	Z	B
b L11	0. 252(4)	0.323(2)	0.431(4)	3.0(13)	L13	0.760(4)	0. 186(2)	0. 536(4)	3.1(14)
N100	0. 123(2)	0.338(1)	0.509(2)	4.1(7)	N300	0.670(2)	0.239(1)	0. 513(2)	4.7(8)
C101	0.095(3)	0.372(2)	0. 491 (3)	6.3(13)	C301	0. 579(3)	0.225(2)	0. 548(3)	6.8(13)
C102	0. 180(3)	0. 403(2)	0. 478(3)	6.5(13)	C302	0. 595(3)	0.197(1)	0.629(3)	5. 5(12)
0103	0. 225(2)	0.3893(9)	0.411(2)	5.0(7)	0303	0.648(2)	0.168(1)	0. 600(2)	6.5(9)
C104	0.303(3)	0.407(1)	0.400(3)	4.1(11)	C304	0.662(3)	0.132(1)	0. 663(3)	5.0(11)
C105	0.352(3)	0.387(1)	0. 337(3)	3. 5(9)	C305	0. 728(3)	0.108(1)	0. 618(3)	5.6(11)

Table 28. Positional and thermal parameters for (2,1,1-crypt-Li) Sn 4 9

a A and B denote the disordered pairs of Sn atoms at 0.30 occupancy.

b The first digit refers to the crypt, the latter two to the position within the crypt.

Table 28. Continued

Atom	x	y	Z	В	Atom	x	ų	Z	В
0106	0.359(2)	0.3470(8)	0.367(2)	4.3(6)	0306	0.802(2)	0. 1317(9)	0. 593(2)	4.7(7)
C107	0.395(3)	0.323(2)	0. 313(3)	5.4(13)	C307	0.866(3)	0.114(1)	0. 541 (3)	5.3(11)
C108	0.411(3)	0.280(1)	0.346(3)	4.6(10)	C308	0. 939(3)	0. 143(2)	0. 526(3)	5.8(14)
N109	0.333(2)	0.268(1)	0.394(2)	4.1(8)	N309	0.892(2)	0.176(1)	0.482(2)	4.6(8)
C1 10	0.276(3)	0.244(2)	0.333(3)	5.7(14)	C310	0.952(3)	0.212(2)	0. 490(3)	6.8(13)
C111	0. 180(3)	0.251(1)	0.357(3)	4.9(11)	C311	0. 926(3)	0.224(1)	0. 587(3)	3.7(10)
0112	0.161(2)	0.2921(9)	0.352(2)	4.0(7)	0312	0.834(2)	0. 2309(8)	0. 596(2)	3.8(6)
C113	0.076(3)	0.300(1)	0.374(3)	5.0(11)	C313	0.806(3)	0.271(1)	0. 553(3)	4.8(11)
C114	0.061(3)	0.303(1)	0.467(3)	4.8(11)	C314	0.711(3)	0.270(1)	0. 568(3)	5.1(11)
C115	0. 147(3)	0.328(2)	0. 592(3)	5.9(13)	C315	0.662(4)	0. 245(2)	0. 420(4)	7.2(15)
C116	0.208(3)	0.274(1)	0.602(3)	4.2(10)	C316	0. 663(3)	0.207(1)	0.369(3)	4.1(10)
0117	0. 291 (2)	0. 3067 (8)	0. 554(2)	3.9(6)	0317	0.734(2)	0.184(1)	0. 394(2)	6.2(8)
C118	0.362(3)	0.277(1)	0. 548(3)	4.7(10)	C318	0.811(3)	0.194(1)	0.347(3)	3.4(10)
C119	0.342(3)	0.249(1)	0. 478(3)	4.8(11)	C319	0. 875(4)	0.168(2)	0.385(4)	10.1(20)
L12	0. 555(5)	0. 427(2)	0.756(5)	3.2(17)	Li4	0. 448(5)	0.062(2)	0.248(5)	3.8(17)
N200	0. 518(2)	0.492(1)	0.803(2)	5.6(10)	N400	0. 522(2)	0.079(1)	0. 374(2)	3.7(8)
C201	0.565(4)	0. 495(2)	0.894(4)	8.3(15)	C401	0. 490(3)	0.114(1)	0. 416(3)	5.1(11)
C202	0.644(3)	0.469(1)	0. 900(3)	5.8(12)	C402	0. 482(3)	0.144(1)	0.335(3)	4.7(10)
0203	0.627(2)	0.429(1)	0.867(2)	6.7(9)	0403	0.408(2)	0.1236(9)	0.284(2)	4.6(7)
C204	0.689(3)	0.403(1)	0. 877(3)	6. 5(12)	C404	0.388(2)	0.147(1)	0.204(2)	4.3(9)
C205	0. 658(3)	0.365(2)	0.841(3)	5.9(12)	C405	0.327(3)	0.125(1)	0.149(3)	5.3(11)
0206	0. 627(2)	0.376(1)	0.750(2)	5. 9(8)	0406	0.379(2)	0.0823(8)	0. 143(2)	4.1(6)
C207	0. 584(3)	0.345(1)	0.704(3)	4.1(11)	C407	0.326(3)	0.052(1)	0. 101 (3)	5.0(11)
C208	0. 562(3)	0.359(1)	0. 622(3)	5.2(11)	C408	0.382(3)	0.018(1)	0.085(3)	5.4(10)
N209	0. 502(2)	0.372(1)	0.630(2)	6.0(10)	N409	0.432(2)	0.008(1)	0. 167(2)	4.7(9)
C210	0. 500(4)	0.424(2)	0. 557(4)	6.7(14)	C410	0. 520(3)	-0.005(2)	0. 153(3)	6.3(13)
C211	0. 588(3)	0. 449(2)	0.562(3)	5.2(13)	C411	0. 580(3)	0.022(2)	0.144(3)	6. 5(14)

Table 28. Continued

Atom	X	y	z	В	Atom	X	IJ	2	В
0212	0.601(2)	0.4665(9)	0.646(2)	5.3(8)	0412	0. 577(2)	0.057(1)	0. 210(2)	6.2(8)
C213	0. 549(3)	0. 505(2)	0.645(3)	5.6(14)	C413	0. 630(3)	0.044(1)	0. 285(3)	6.3(12)
C214	0. 548(3)	0.519(2)	0.746(3)	6.7(14)	C414	0. 617(3)	0.076(2)	0.342(3)	6.3(12)
C215	0. 431 (4)	0. 493(2)	0.819(4)	10.3(17)	C415	0. 500(3)	0.045(1)	0. 435(3)	5.1(10)
C216	0.401(4)	0. 453(2)	0.835(4)	9.8(17)	C416	0.400(3)	0.034(1)	0. 430(3)	4. 5(12)
0217	0. 422(2)	0. 4219(9)	0.783(2)	5.6(8)	0417	0.385(2)	0. 0251 (8)	0.337(2)	4.0(6)
C218	0. 372(3)	0.418(2)	0. 695(3)	6.7(14)	C418	0. 402(3)	-0.017(1)	0.318(3)	5.8(11)
C219	0. 412(3)	0.383(2)	0. 652(3)	6.5(13)	C419	0. 379(3)	-0.019(2)	0. 221 (3)	6.0(12)

Figure 15. Two views of $\operatorname{Sn}_{9}^{4-}$ cluster A (C_{4v}) in (2,1,1-crypt-Li⁺)₄Sn₉⁴⁻

Figure 16. Two views of $\operatorname{Sn_9}^{4-}$ cluster B ($\operatorname{D_{3h}}$) in (2,1,1-crypt-Li⁺)₄Sn₉⁴⁻

A	(C _{4v})	в (^D _{3h})					
Sn-Sn	Distance (Å)	Sn-Sn	Distance (Å)				
l – 2	2.949 (5)	1 – 3B	3.693 (10)				
2 – 3A	2.889 (9)	5B - 8	3.599 (9)				
3A – 4A	2.845 (11)	6B - 7B	3.330 (11)				
1 – 4A	2.901 (7)	1 – 5B	2.965 (9)				
5A - 6A	3.168 (10)	1 - 6B	3.072 (7)				
5A – 7A	3.242 (9)	5B - 6B	3.031 (12)				
7A - 8	3.224 (8)	3B – 7B	3.025 (12)				
5A - 8	3.378 (7)	3B – 8	2.964 (9)				
5A - 9A	2.932 (9)	7B – 8	3.078 (9)				
5A – 9A	2.945 (9)	1 - 2	2.949 (5)				
7A – 9A	2.935 (9)	3B - 2	3.007 (9)				
3 – 9A	3.012 (7)	6B - 2	2.798 (8)				
1 – 5A	2.930 (7)	7B – 2	2.951 (8)				
1 – 6A	2,988 (8)	1 - 4B	3.013 (11)				
2 - 6A	3.154 (8)	3 B - 4B	2.940 (15)				
2 – 7A	2.959 (7)	5B - 4B	2.894 (15)				
3A – 7A	2.973 (11)	8 – 4B	2.854 (12)				
3A - 8	2.882 (9)	5B - 9B	2.975 (11)				
4A – 8	3.002 (8)	6B - 9B	2.966 (9)				
4A - 5A	2.981 (10)	7B – 9B	2.939 (10)				
L – 3A	3.991 (9)	8 – 9B	2.833 (6)				
2 – 4A	4.196 (8)	2 – 4B	4.592 (11)				

Table 29. Distances in $\operatorname{Sn_9}^{4-}$ A and B in (2,1,1-crypt-Li⁺) $_4\operatorname{Sn_9}^{4-}$

After resolving six of the nine tin atoms into two positions, one does indeed obtain two configurations of approximately C_{4v} and D_{3h} symmetry. The resolved atoms are separated by 0.48 (1) Å to 0.76 (1) Å. Cluster A is fairly regular with reasonable bond distances and dihedral angles (see Table 21) for C_{4v} geometry. Distances average 2.956 Å for the capping atom to the capped face, 3.253 Å within the capped face, 2.984 Å for the capped face to the base and 2.896 Å within the base; comparable values for the $\mathrm{Sn_9}^{4-}$ anion in $(2,2,2-\mathrm{crypt-Na^+})_4\mathrm{Sn_9}^{4-}$ are 2.956, 3.242, 2.971 and 2.964 Å, respectively. The base and capped face of the unicapped square antiprism are within ±0.015 and ±0.013 Å of planarity, respectively; the dihedral angle between these planes is 2.0°.

Cluster B is not as regular, retaining some badly elongated ellipsoids, but the D_{3h} geometry is still clearly evident in the bond distances and dihedral angles (see Table 21). The height (h), edge (e) and capping (c) distances for the tricapped trigonal prism average 3.541 Å, 3.023 Å and 2.927 Å, respectively, and the h:e ratio is 1.17; these values are indeed appropriate for a 22 skeletal electron D_{3h} cluster as seen in Table 22 and 24.

The EHMO calculations previously described indicate the C_{4v} configuration for ${\rm Sn_9}^{4-}$ is preferred over the 15% elongated ${\rm D_{3h}}$ geometry by a difference of 1.0 eV in total energy. However, the elongation observed here is 17%, for which this calculated difference decreases to only 0.4 eV (for an idealized ${\rm D_{3h}}$ cluster proportioned according to the distances in cluster B the calculated total energy is -311.34 eV). The ${\rm Sn_9}^{4-}$ anion is known to be fluxional in solution.³³ The C_{4v} configuration certainly occurs in the 2,2,2-crypt-Na⁺ salt; perhaps solid state effects in this 2,1,1-crypt-Li⁺ salt help to stabilize the ${\rm D_{3h}}$ configuration.

The cations in this compound have essentially C_2 symmetry, similar to those found in (2,1,1-crypt-Li⁺)I⁻.⁹⁰ Bond distances range from 2.02 (8) to 2.30 (7) Å for Li-O and from 2.21 (7) to 2.40 (8) Å for Li-N. This is the first structure of a polyatomic anion with 2,1,1-crypt-Li⁺ cations. Unfortunately, while the switch from 2,2,2-crypt to the smaller, less symmetrical 2,1,1-crypt ligand does avoid the three-fold symmetry which often causes disorder, it seems it does not eliminate anion disorder problems.

.

FUTURE WORK

Clearly, many homo- and heteropolyatomic anions remain to be discovered. Although investigations of the homoatomic systems have been reasonably thorough, some have involved only one alkali metal and the 2,2,2-crypt ligand. Simply switching from sodium to potassium alloys served here to produce the new Sb_4^{2-} and Sn_9^{3-} anions. There are several homopolyatomic anions whose presence is indicated, but which have yet to be structurally characterized. For example, both the original Zintl investigations^{8,9} and ²⁰⁷Pb NMR results prove the Pb_9^{4-} anion exists in solution.³⁴ Sn_4^{2-} has been identified by solution NMR,³⁵ and there is a second-hand mention of the NMR identification of Sn_0^{2-} as well as analysis of a compound of stoichiometry $\text{Li}_2\text{Sn}_9 \cdot 2.5\text{en};^{63}$ however, the small HOMO-LUMO gap found in the EHMO calculations for ${\rm Sn_q}^{2-}$ may indicate a lack of stability. One can also speculate as to whether isoelectronic anions to known species might exist, such as Ge_5^{2-} , Sn_{10}^{2-} , Sb_{11}^{3-} or Bi_7^{3-} . Also, the paramagnetic Sn_9^{3-} anion is evidence that these clusters are not restricted to even numbers of electrons. The analogous Ge_0^{3-1} anion may indeed occur in the 2,2,1-crypt-Na⁺ salt.

Investigations of heteroatomic systems have really just begun. So far, most reactions have involved 1:1:1 ternary alloy compositions; other stoichiometries will certainly produce new anions. There are many possibilities just in terms of isoelectronic analogs of known anions. An example is $\text{Sn}_8\text{Bi}^{3-}$ for which some solution ¹¹⁹Sn NMR evidence exists,⁶³ and which may be one product of the KSn₂ + K₃Bi₂ reactions. However, the discoveries of $\text{Sn}_2\text{Bi}_2^{2-}$, $\text{Pb}_2\text{Sb}_2^{2-}$, and $\text{T}^{1}\text{Sn}_9^{3-}$ demonstrate that the combination of elements from different groups can lead to quite new configurations. Because of their electronic requirements, group IV elements favor closo (or nido) clusters while group V elements favor relatively open and valence-precise anions - the proper combination should produce clusters of intermediate-type configurations. Some hindrances to the successful synthesis and structural characterization of these heteropolyatomic anions include the relative stability of the homopolyatomic species (decanting solutions from the alloy residue before crystal growth is recommended in this respect), the higher probability of multiphase products (for example, members of the $\text{Sn}_{9-x}\text{Pb}_x^{4-}$ family coexist in solution), ³⁴ and the possibility of anion disorder and corresponding inability to distinguish heteroatoms due to the lack of specificity sometimes provided by the crypt cations (as with $\text{Sn}_2\text{Bi}_2^{2-}$ and $\text{Pb}_2\text{Sb}_2^{2-}$).

For both homo- and heteroatomic systems, the choice of alloy and reaction conditions is clearly important. The use of different crypt ligands should be beneficial, although the reactions of 2,2,1-crypt and 2,1,1-crypt here have not been encouraging because of the difficulty of producing crystalline compounds. Because the crypt cations in these structures do dominate the crystal packing, the choice of crypt ligand and corresponding metal cation should be an important factor in anion stability. This dominance (and the disorder problems which often follow) might be minimized if the larger crypt cations are used for the bulkier anions with relatively small charges, while the more reduced or smaller anions are isolated with the relatively small crypt cations. Another choice in the latter case would be the use of alkaline earth-crypt cations as this would cut the number of crypts per anion in half; $(2,2,2-\text{crypt-Ba}^{2+})_2\text{Se}_4^{2-}$ is an example of such a salt.⁹¹ The elusive Pb₉⁴⁻ anion might be a good candidate for such a change.

The possible effects of the use of ternary alloys in production of new homopolyatomic anions cannot be ignored. While the ease of formation of the new ${\rm Sb_4}^{2^-}$ anion with the ternary alloys KAuSb, KGeSb and KPbSb may be attributed to the change from sodium to potassium cations, it is a fact that large crystals of the ${\rm Bi_4}^{2^-}$ salt are more rapidly formed in the ternary KSn₂ + K₃Bi₂ reaction than in previous binary K₃Bi₂ reactions. Of more interest is the unusual compound (crypt-K⁺)₃(KSn₉)³⁻ formed from a reaction of the ternary alloy KHgSn.¹⁸

There have been several interesting reports recently involving reactions of Zintl anions. $\operatorname{Sn_9}^{4-}$ or $\operatorname{Pb_9}^{4-}$ will reportedly react with Pt(PPh_3)₄ in en to form (PPh_3)₂PtSn₉⁴⁻ or (PPh_3)₂PtPb₉⁴⁻ as identified by ¹¹⁹Sn, ²⁰⁷Pb and ³¹P NMR.⁹² Also, Haushalter and Krause have made use of the strong reducing power of these anions in their intriguing electroless metallization reactions to surface modify polyimides,⁹³ certain inorganic solids, or even the transition metals Pt and Pd.⁹⁴ Such investigations of polyatomic anion reactions should prove to be worthwhile endeavors but the basis of that research must first be the thorough knowledge of the synthesis and structure of the anions themselves.

LITERATURE CITED

1.	Joannis, A. <u>Compt. Rend</u> . 1891, 113, 795-798; 1892, 114, 585-587.
2.	Kraus, C. A. <u>J. Am. Chem. Soc</u> . 1907, 29, 1557-1571.
3.	Smyth, F. H. J. Am. Chem. Soc. 1917, 39, 1299-1312.
4.	Peck, E. B. J. Am. Chem. Soc. 1918, 40, 335-347.
5.	Kraus, C. A.; Kurtz, H. F. <u>J. Am. Chem. Soc</u> . 1925, 47, 43-60.
6.	Kraus, C. A. <u>J. Am. Chem. Soc</u> . 1922, 44, 1216-1239.
7.	Kraus, C. A. <u>J. Electrochem. Soc</u> . 1924, 45, 175-186.
8.	Zintl, E.; Goubeau, J.; Dullenkopf, W. <u>Z. Phys. Chem., Abt. A</u> 1931, 154, 1-46.
9.	Zintl, E.; Harder, A. <u>Z. Phys. Chem., Abt. A</u> 1931, 154, 47-91.
10.	Zintl, E.; Dullenkopf, W. Z. Phys. Chem., Abt. B 1932, 16, 183-194.
11.	Zintl, E.; Kaiser, H. <u>Z. Anorg. Allg. Chem.</u> 1933, 211, 113-131.
12.	Cisar, A.; Corbett, J. D. <u>Inorg. Chem</u> . 1977, 16, 2482-2487.
13.	Johnson, W. C.; Wheatly, A. C. <u>Z. Anorg. Allg. Chem</u> . 1934, 216, 273-287.
14.	Schäfer, H.; Eisenmann, B.; Müller, W. <u>Angew. Chem., Int. Ed. Engl</u> . 1973, 9, 694-712.
15.	von Schnering, HG. Angew. Chem., Int. Ed. Engl. 1981, 20, 33-51.
16.	Dietrich, B.; Lehn, J. M.; Sauvage, J. P. <u>Tetrahedron Lett</u> . 1969, 34, 2885-2888.
17.	Lehn, J. M. Struct. and Bond. 1973, 16, 1-69.
18.	Corbett, J. D.; Critchlow, S. C.; Burns, R. C. In "Rings, Clusters, and Polymers of the Main Group Elements"; Cowley, A., Ed.; American Chemical Society: Washington, D.C., 1983; ACS Symp. Ser. No. 232; Chapter 6.

19. Edwards, P.; Corbett, J. D. <u>Inorg. Chem</u>. 1977, 16, 903-907.

- 20. Critchlow, S. C.; Corbett, J. D. <u>J. Am. Chem. Soc</u>. 1983, 105, 5715-5716.
- 21. Corbett, J. D.; Edwards, P. J. Am. Chem. Soc. 1977, 99, 3313-3317.
- Belin, C. H. E.; Corbett, J. D.; Cisar, A. <u>J. Am. Chem. Soc</u>. 1977, 99, 7163-7169.
- 23. Critchlow, S. C.; Corbett, J. D. Inorg. Chem. 1984, 23, accepted.
- 24. Adolphson, D. G.; Corbett, J. D.; Merryman, D. J. <u>J. Am. Chem. Soc</u>. 1976, 98, 7234-7239.
- 25. Belin, C. H. E. J. Am. Chem. Soc. 1980, 102, 6036-6040.
- 26. Critchlow, S. C.; Corbett, J. D. Inorg. Chem. 1982, 21, 3286-3290.
- 27. Burns, R. C.; Corbett, J. D. J. Am. Chem. Soc. 1981, 103, 2627-2632.
- 28. Burns, R. C.; Corbett, J. D. J. Am. Chem. Soc. 1982, 104, 2804-2810.
- 29. Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1-66.
- 30. Kummer, D.; Diehl, L. Angew. Chem., Int. Ed. Engl. 1970, 9, 895.
- Diehl, L.; Khodadadeh, K.; Kummer, D.; Strähle, J. <u>Chem. Ber</u>. 1976, 109, 3404-3418.
- Teller, R. G.; Krause, L. J.; Haushalter, R. C. <u>Inorg. Chem</u>. 1983, 22, 1809-1812.
- Rudolph, R. W.; Wilson, W. L.; Parker, F.; Taylor, R. C.; Young, D. C. <u>J. Am. Chem. Soc</u>. 1978, 100, 4629.
- Rudolph, R. W.; Taylor, R. C.; Young, D. C. In "Fundamental Research in Homogeneous Catalysis"; Tsutsui, M., Ed.; Plenum: New York, 1979; pp. 997-1005.
- Rudolph, R. W.; Wilson, W. L.; Taylor, R. C. J. Am. Chem. Soc. 1981, 103, 2480-2481.
- 36. Critchlow, S. C.; Corbett, J. D. <u>J. Chem. Soc., Chem. Commun</u>. 1981, 236-237.
- Clark, C. M.; Smith, D. K.; Johnson, G. J. "A Fortran IV Program for Calculating X-Ray Powder Diffraction Patterns--Version 5", Department of Geosciences, Pennsylvania State University, 1973.

- Hansen, M.; Anderko, K. "Constitution of Binary Alloys", 2nd ed.; McGraw-Hill: New York, 1958; pp. 881-882.
- 39. Hewaidy, I. F.; Busmann, E.; Klemm, W. <u>Z. Anorg. Allg. Chem</u>. 1964, 328, 283-293.
- Hansen, M.; Anderko, K. "Constitution of Binary Alloys", 2nd ed.; McGraw-Hill: New York, 1958; p. 768.
- 41. Witte, J.; von Schnering, H.-G. Z. Anorg. Allg. Chem. 1964, 327, 260-273.
- 42. Bailey, D. M.; Skelton, W. H.; Smith, J. F. <u>J. Less Common Met</u>. 1976, 64, 233-240.
- 43. Müller, W., Dissertation, Eduard-Zintl-Institut der Technischen Hochschule Darmstadt, West Germany, 1975.
- 44. Cisar, A.; Corbett, J. D. Inorg. Syn. 1983, 22, in press.
- 45. Stierman, R. J.; Gschneidner, K. A., Department of Materials Science and Engineering, Iowa State University, to be published.
- 46. Cisar, A.; Corbett, J. D. Inorg. Chem. 1977, 16, 632-635.
- 47. Burns, R. C.; Corbett, J. D. Inorg. Chem. 1981, 20, 4433-4434.
- 48. Belin, C. H. E.; Charbonnel, M. M. Inorg. Chem. 1982, 21, 2504-2506.
- 49. Burns, R. C.; Corbett, J. D., Ames Laboratory, Iowa State University, unpublished research.
- 50. Corbett, J. D., Ames Laboratory, Iowa State University, unpublished research.
- 51. Schroeder, D. R.; Jacobson, R. A. Inorg. Chem. 1973, 12, 210-213.
- 52. Jacobson, R. A. J. Appl. Crystallogr. 1976, 9, 115-118.
- 53. Karcher, B., Ph. D. Dissertation, Iowa State University, 1981.
- 54. Takusagawa, F., Ames Laboratory, Iowa State University, unpublished program, 1976.
- 55. Lapp, R. L.; Jacobson, R. A., Ames Laboratory, Iowa State University, unpublished program, 1979.
- 56. Powell, D. R.; Jacobson, R. A., Ames Laboratory, Iowa State University, unpublished program, 1979.

- 57. "International Tables for X-Ray Crystallography", Vol. III; Kynoch Press: Birmingham, England, 1968.
- Johnson, C. K. "ORTEP: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations", ORNL Report 3794, Oak Ridge National Laboratory, Oak Ridge, TN, 1970.
- 59. Rothman, M. J.; Bartell, L. S.; Lohr, L. L., Jr. <u>J. Am. Chem. Soc</u>. 1981, 103, 2482-2483.
- 60. Main, P. "MULTAN 80, A System of Computer Programs for the Automatic Solution of Crystal Structures for X-Ray Diffraction Data", University of York Printing Unit: York, United Kingdom, 1980.
- 61. Friedman, R. M.; Corbett, J. D. Inorg. Chem. 1973, 12, 1134-1139.
- Hart, R. R.; Robin, M. B.; Kuebler, N. A. J. Chem. Phys. 1965, 42, 3631-3638.
- 63. Wilson, W. L., Ph. D. Dissertation, University of Michigan, 1982.
- 64. Dahlmann, W.; v. Schnering, H.-G. <u>Naturwissenschaften</u> 1972, 59, 420; 1973, 60, 429.
- 65. Schmettow, W.; von Schnering, H.-G. Angew. Chem., Int. Ed. Engl. 1977, 16, 857.
- Leung, Y. C.; Waser, J.; van Houten, S.; Vos, A.; Wiegers, G. A.; Wiebenga, F. H. <u>Acta Crystallogr., Sect. B</u> 1957, 10, 574-576.
- 67. Hönle, W.; von Schnering, H.-G. Z. Anorg. Allg. Chem. 1978, 440, 171-182.
- Hamilton, W. C.; Ibers, J. C. "Hydrogen Bonding in Solids"; Benjamin: New York, 1968; p. 16.
- 69. Bondi, A. J. Phys. Chem. 1964, 68, 441-452.
- 70. Drago, R. S. "Physical Methods in Chemistry"; W. B. Saunders Co.: Philadelphia, 1977; p. 413.
- Selwood, P. W. "Magnetochemistry", 2nd ed.; Interscience: New York, 1956; p. 78.
- 72. Burns, R. C., Department of Chemistry, McMaster University, Hamilton, Ontario, Canada, private communication, 1982.
- 73. Burns, R. C.; Gillespie, R. J.; Garnes, J. A.; McGlinchey, M. J. Inorg. Chem. 1982, 21, 799-807.

- 74. King, R. B. Inorg. Chim. Acta 1982, 57, 79-86.
- 75. Wade, K.; O'Neill, M. E. J. Molec. Str. 1983, 103, 259-268.
- 76. Wade, K.; O'Neill, M. E. Polyhedron, 1983, 2, 963-966.
- 77. Guggenberger, L. J. Inorg. Chem. 1968, 11, 2260-2264.
- 78. Koetzle, T. F.; Scarbrough, F. E.; Lipscomb, W. N. <u>Inorg. Chem</u>. 1968, 7, 1076-1084.
- 79. Guggenberger, L. J.; Muetterties, E. L. <u>J. Am. Chem. Soc</u>. 1976, 98, 7221-7225.
- 80. Corbett, J. D.; Rundle, R. E. Inorg. Chem. 1964, 3, 1408-1412.
- 81. Lohr, L. L. Inorg. Chem. 1981, 20, 4229-4235.
- Schaffer, A. M.; Gouterman, M.; Davidson, E. R. <u>Theoret. Chim.</u> <u>Acta (Berl.)</u> 1973, 30, 9-30.
- 83. Baetzold, R. C. Adv. in Catalysis 1976, 25, 1-55.
- McGlynn, S. P.; Vanquickenborne, L. G.; Kinoshita, M.; Carroll, D. G. "Introduction to Applied Quantum Chemistry"; Holt, Rinehart and Winston, Inc.: New York, 1972; Chapter 4.
- Moore, C. E. "Atomic Energy Levels", Natl. Stand. Ref. Data Ser., <u>Natl. Bur. Stand</u>. (U.S.) 1971, NSRDS-NBS 35, Vol. III.
- 86. Politzer, P. Trans. Faraday Soc. 1968, 64, 2241-2246.
- Cusachs, L. C.; Corrington, J. H. In "Sigma Molecular Orbital Theory"; Sinanoglu, O.; Wiberg, K. B., Eds.; Yale University Press: New Haven, Conn., 1970; Chapter IV-4.
- Hursthouse, M. B.; Kane, J.; Massey, A. G. <u>Nature</u> 1970, 228, 659-660.
- 89. Hershaft, A.; Corbett, J. D. Inorg. Chem. 1963, 2, 979-985.
- 90. Moras, D.; Weiss, R. Acta Crystallogr., Sect. B 1973, 29, 400-403.
- 91. Koenig, T.; Eisenmann, B.; Schäfer, H. <u>Z. Anorg. Allg. Chem.</u> 1983, 498, 99-104.
- 92. Teixidor, F.; Luetkens, M. L., Jr.; Rudolph, R. W. J. Am. Chem. Soc. 1983, 105, 149-150.

- 93. Haushalter, R. C. <u>Angew. Chem., Int. Ed. Engl</u>. 1983, 22, 558-559; <u>Angew. Chem. Suppl</u>. 1983, 766-777.
- 94. Krause, L.; Haushalter, R. Thin Solid Films 1983, 102, 161-171.

.

ACKNOWLEDGEMENTS

I would especially like to thank Professor John D. Corbett for his advice and patience throughout these investigations.

I also thank Dr. R. A. Jacobson and members of his research group for the use of the diffractometers and access to the crystallographic programs; in particular I am grateful to J. Richardson for his assistance with the low temperature data collection set-up.

F. Laabs is thanked for the microprobe analyses, R. Stierman kindly assisted with the magnetic susceptibility work, and G. Lukat was a great help in obtaining the ESR spectra.

Especial thanks are due to Dr. R. C. Burns for the NMR data as well as for many valuable discussions. The past and present members of Physical and Inorganic Chemistry Group IX of the Ames Laboratory will always be fondly remembered for their help and friendship.

Last, but by no means least, I wish to thank my parents and family whose encouragement, love and understanding have sustained me throughout my educational years. APPENDIX A: ADDITIONAL DISTANCES AND ANGLES

Atom	Atom	Distance	Atom	Atom	Distance	Atom	Atom	Distance	Atom	Atom	Distance
К1	N10	2.99(4)	K1	033	2. 77(3)	K2	N40	2.96(4)	K2	063	2.84(3)
K1	N19	3.00(4)	K1	016	2.88(2)	K2	N49	2.91(4)	K2	046	2.88(3)
K1	013	2.75(3)	K1	026	2.86(3)	K2	043	2. 79(2)	K2	056	2.83(3)
К1	023	2.78(3)	K1	036	2.85(3)	K2	053	2.88(2)	K2	066	2.84(3)
N10	C11	1.50(6)	N19	C18	1.45(5)	N40	C41	1. 53(6)	N49	C48	1.46(7)
N10	C21	1.45(6)	N19	C28	1.46(5)	N40	C51	1.48(6)	N49	C58	1. 52(6)
N10	C31	1.42(6)	N19	C38	1.50(6)	N40	C61	1.49(7)	N49	C68	1. 52(7)
013	C12	1.37(6)	016	C15	1.46(5)	043	C42	1.31(6)	046	C45	1. 45(5)
013	C14	1.38(5)	016	C17	1.40(6)	043	C44	1.54(6)	046	C47	1.40(8)
023	C22	1.35(7)	026	C25	1.47(4)	053	C52	1.41(6)	056	C 5 5	1.50(5)
023	C24	1.43(5)	026	C27	1.37(5)	053	C54	1.44(4)	056	C57	1. 43(6)
033	C32	1.31(7)	036	C35	1.48(5)	063	C62	1.46(6)	066	C65	1.36(5)
033	C34	1.44(6)	036	C37	1.37(6)	063	C64	1.55(4)	066	C67	1.35(7)
C11	C12	1.60(7)	C27	C28	1.54(6)	C41	C42	1.45(7)	C57	C58	1.38(7)
C14	C15	1.57(6)	C31	C32	1.52(8)	C44	C45	1.43(7)	C61	C62	1.64(7)
C17	C18	1.51(7)	C34	C35	1.36(7)	C47	C48	1.57(9)	C64	C65	1.34(6)
C21	C22	1.63(8)	C37	C38	1.58(7)	C51	C52	1.60(6)	C67	C68	1. 51(8)
C24	C25	1.39(7)				C54	C55	1.41(7)			
NEN1	CEN1	1.2(3)	CEN2	NEN2	1.4(2)	SnBi1	C12	3. 99(4)	SnB13	C22	4.05(5)
CEN1	CEN2	1.9(2)				SnBi1	C32	4.01(5)	SnBi4	CEN1	4. 09(18)

Table A.1. Additional distances (Å) in (2,2,2-crypt-K) Sn Bi .en
Table A.2. Additional angles (deg) in (2,2,2-crypt-K) Sn Bi .en

									<u> </u>						
Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
NIO	К1	N19	178. 9(8)	N19	К1	026	59. 6(8)	N40	K2	N49	178. 0(10)	N49	K2	056	62. 5(9)
N10	K1	013	61.2(9)	N19	K1	036	61.2(8)	N40	K2	043	61.9(9)	N49	К2	066	59.8(10)
N10	K1	023	60.3(9)	013	К1	016	57.3(8)	N40	к2	053	61.6(9)	043	K2	046	59.6(9)
N10	К1	033	59.6(10)	023	К1	026	59.8(9)	N40	K2	063	59.8(9)	053	K2	056	58. 6(8)
N19	K1	016	61.1(8)	033	K1	036	59.4(10)	N49	K2	046	61.6(10)	063	K2	066	59. 8(8)
K1	N10	C11	109(3)	K1	N19	C18	109(3)	K2	N40	C41	107(3)	K2	N49	C48	113(3)
K1	N10	C21	112(3)	K1	N19	C28	107(3)	K2	N40	C51	111(3)	K2	N49	C58	106(3)
K1	N10	C31	112(3)	K1	N17	C38	109(3)	К2	N40	C61	114(3)	K2	N49	C68	111(3)
C11	N10	C21	108(4)	C18	N19	C28	109(3)	C41	N40	C51	105(3)	C48	N49	C58	109(4)
C11	N10	C31	110(4)	C18	N19	C38	110(3)	C41	N40	C61	111(4)	C48	N49	C68	107(4)
C21	N10	C31	106(4)	C28	N19	C38	113(3)	C51	N40	C61	109(4)	C58	N49	C68	111(4)
K1	013	C12	123(2)	К1	026	C25	112(2)	к2	043	C42	113(2)	K2	056	C55	115(2)
K1	013	C14	125(3)	K1	026	C27	118(2)	K2	043	C44	116(2)	K2	056	C57	116(2)
C12	013	C14	104(3)	C25	026	C27	112(3)	C42	043	C44	116(3)	C55	056	C57	115(3)
K1	016	C15	113(2)	K1	033	C32	117(3)	K2	046	C45	118(3)	K2	063	C62	120(2)
K1 -	016	C17	115(2)	K1	033	C34	116(3)	K2	046	C47	117(3)	K2	063	C64	112(2)
C15	016	C17	113(3)	C32	033	C34	114(4)	C45	046	C47	107(3)	C62	063	C64	111(3)
К1	023	C22	118(3)	K1	036	C35	111(2)	К2	053	C52	112(2)	K2	066	C65	115(3)
К1	023	C24	119(2)	К1	036	C37	115(2)	K2	053	C54	116(2)	K2	066	C67	121(3)
c22	023	C24	111(3)	C35	036	C37	111(3)	C32	053	C54	112(3)	C65	066	C67	110(4)
N10	C11	C12	113(4)	026	C25	C24	113(3)	N40	C41	C42	109(4)	056	C55	C54	109(4)
013	C12	C11	108(4)	026	C27	C28	105(3)	043	C42	C41	118(4)	056	C57	C 58	113(4)
013	C14	C15	108(3)	N19	C28	C27	112(4)	043	C44	C45	114(4)	N49	C58	C57	118(4)
016	C15	C14	109(3)	N10	C31	C32	112(5)	046	C45	C44	107(3)	N40	C61	C62	106(4)
016	C17	C18	112(4)	033	C32	C31	115(4)	046	C47	C48	112(5)	063	C62	C61	106(4)
N19	C18	C17	116(4)	033	C34	C35	113(4)	N49	C48	C47	114(5)	063	C64	C65	109(3)
N10	C21	,C22	107(4)	036	C35	C34	107(3)	N40	C51	C52	105(3)	066	C65	C64	118(4)
023	C22	C21	109(4)	036	C37	C38	110(3)	053	C52	C51	111(3)	066	C67	C68	108(4)
023	C24	C25	113(3)	N19	C38	C37	110(4)	053	C54	C55	107(3)	N49	C68	C67	113(5)
NEN1	CEN1	CEN2	67(12)	CEN1	CEN2	NEN2	124(12)								

						4+ 4+					
Atom	Atom	Distance	Atom	Atom	Distance	Atom	Atom	Distance	Atom	Atom	Distance
K1	N10	3.02(3)	K1	033	2.80(2)	к2	N40	2. 95(3)	K2	063	2.86(2)
K1	N17	2. 99(3)	К1	016	2.87(2)	K2	N49	2.94(3)	K2	046	2.87(2)
K1	013	2.78(2)	K1	026	2.87(2)	K2	043	2.81(2)	K2	056	2.80(2)
K1	023	2.77(2)	K1	036	2.90(2)	K2	053	2.85(2)	K2	066	2.86(2)
N10	C11	1.42(5)	N17	C18	1.51(4)	N40	C41	1.48(4)	N47	C48	1.35(5)
N10	C21	1.45(5)	N19	C28	1.48(4)	N40	C51	1.47(4)	N49	C 58	1. 49(5)
N10	C31	1.46(5)	N19	C38	1.47(4)	N40	C61	1.41(5)	N49	C68	1.58(5)
013	C12	1.41(5)	016	C15	1.48(4)	043	C42	1.44(4)	046	C45	1. 50(4)
013	C14	1.47(4)	016	C17	1.42(5)	043	C44	1.46(4)	046	C47	1.35(5)
023	C22	1.33(5)	026	C25	1.44(4)	053	C52	1.40(5)	056	C55	1.45(4)
023	C24	1.44(4)	026	C27	1.37(4)	053	C54	1.42(4)	056	C57	1.48(4)
033	C32	1.33(5)	036	C35	1.43(4)	063	C62	1.45(5)	066	C65	1.38(4)
033	C34	1.40(4)	036	C37	1.39(5)	063	C64	1.51(4)	066	C67	1. 47(5)
C11	C12	1. 57(5)	C27	C28	1. 55(4)	C41	C42	1.48(5)	C57	C58	1. 38(5)
C14	C15	1.45(5)	C31	C32	1.58(6)	C44	C45	1.46(6)	C61	C62	1. 57(5)
C17	C18	1.52(5)	C34	C35	1.46(5)	C47	C48	1.56(6)	C64	C65	1.46(6)
C21	C22	1.61(6)	C37	C38	1.58(5)	C51	C52	1.58(5)	C67	C48	1. 43(6)
C24	C25	1.44(5)				C54	C55	1.46(5)			
NEN1	CEN2	1.46(14)	CEN3	NEN4	1.37(12)	PbSb1	NEN1	3. 87(8)	PbSb2	C12	3. 96(4)
CEN2	CEN3	1.47(15)				PbSb1	C32	3. 99(4)	PbSb4	C64	3. 77(3)

Table A.3. Additional distances (Å) in (2,2,2-crypt-K) Pb Sb .en

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
N10	К1	N19	179. 3(7)	N19	K1	026	60.3(6)	N40	K2	N49	179. 3(8)	N49	к2	056	62. 2(8)
N10	K1	013	60.5(7)	N17	К1	036	59.7(7)	N40	К2	043	62.8(7)	N49	K2	066	62. 4(8)
N10	K1	023	60.9(7)	013	К1	016	60.2(7)	N40	K2	053	61.5(7)	043	K2	046	59.2(6)
N10	К1	033	60.8(8)	023	К1	026	58. 8(6)	N40	K2	063	60. 5(7)	053	K2	056	58.7(7)
N19	K1	016	60.3(7)	033	К1	036	60.1(7)	N49	K2	046	59. 2(8)	063	K2	066	58.0(7)
K1	N10	C11	110(2)	К1	N19	C18	110(2)	K2	N40	C41	108(2)	K2	N49	C48	115(3)
K1	N10	C21	111(2)	К1	N19	C28	110(2)	к2	N40	C51	112(2)	K2	N49	C58	108(2)
K1	N10	C31	112(2)	K1	N19	C38	113(2)	K2	N40	C61	111(2)	K2	N49	C68	110(2)
C11	N10	C21	109(3)	C18	N19	C28	109(2)	C41	N40	C51	108(3)	C48	N49	C58	112(3)
C11	N10	C31	109(3)	C18	N19	C38	106(2)	C41	N40	C61	110(3)	C48	N49	C68	109(3)
C21	N10	C31	106(3)	C28	N19	C38	110(2)	C51	N40	C61	108(3)	C58	N49	C68	102(3)
K1	013	C12	120(2)	K1	026	C25	114(2)	K2	043	C42	114(2)	K2	056	C55	117(2)
К1	013	C14	118(2)	K1	026	C27	118(2)	K2	043	C44	117(2)	K2	056	C57	117(2)
C12	013	C14	110(2)	C25	026	C27	111(2)	C42	043	C44	116(2)	C55	056	C57	110(2)
K1	016	C15	110(2)	K1	033	C32	116(2)	K2	046	C45	117(2)	K2	063	C62	120(2)
K1	016	C17	118(2)	K1	033	C34	117(2)	к2	046	C47	119(2)	K2	063	C64	117(2)
C15	016	C17	115(2)	C32	033	C34	115(3)	C45	046	C47	108(3)	C62	063	C64	111(2)
К1	023	C22	118(2)	K 1	036	C35	110(2)	K2	053	C52	115(2)	K2	066	C65	119(2)
K1	023	C24	119(2)	K1	036	C37	118(2)	K2	053	C54	116(2)	K2	066	C67	115(2)
C22	023	C24	111(3)	C35	036	C37	111(2)	C52	053	C54	110(2)	C65	066	C67	112(3)
N10	C11	C12	114(3)	026	C25	C24	108(3)	N40	C41	C42	112(3)	056	C55	C54	107(3)
013	C12	C11	108(3)	026	C27	C28	111(2)	043	C42	C41	114(3)	056	C57	C58	107(3)
013	C14	C15	106(3)	N19	C28	C27	113(2)	043	C44	C45	114(3)	N49	C 58	C57	109(3)
016	C15	C14	110(3)	N10	C31	C32	107(3)	046	C45	C44	105(3)	N40	C61	C62	116(3)
016	C17	C18	110(3)	033	C32	C31	116(3)	046	C47	C48	114(3)	063	C62	C61	107(3)
N19	C18	C17	112(3)	033	C34	C35	112(3)	N49	C48	C47	114(4)	063	C64	C65	107(3)
N10	C21	C22	111(3)	036	C35	C34	110(3)	N40	C51	C52	110(3)	066	C65	C64	112(3)
023	C22	C21	113(3)	036	C37	C38	109(3)	053	C52	C51	111(3)	066	C67	C68	113(3)
023	C24	C25	113(3)	N19	C38	C37	112(3)	053	C54	C55	110(3)	N49	C68	C67	115(3)
NEN1	CEN2	CEN3	100(9)	CEN2	CEN3	NEN4	124(9)								

Table A.4. Additional angles (deg) in (2,2,2-crypt-K) Pb Sb .en

Atom	Atom	Distance	Atom	Atom	Distance
ĸ	06	2.749(6)	к	013	2.847(7)
к	016	2.773(5)	к	023	2.816(7)
к	026	2.780(5)	к	NO	2.963(7)
к	03	2.831(8)	к	N9	2. 990(6)
03	C2a	1.504(2)	023	C24	1.395(1)
03	C2b	1,440(3)	06	C5	1.458(1)
03	C4	1.441(2)	06	C7	1.442(1)
013	C12a	1.501(2)	016	C15	1.408(1)
013	C126	1.515(2)	016	C17	1.419(1)
013	C14	1.420(1)	026	C25	1.435(1)
023	C22a	1. 547(2)	026	C27	1.401(1)
023	C22b	1.428(2)			
NO	Cla	1.377(2)	NO	C21	1.447(2)
NO	C15	1.544(3)	N9	68	1.477(1)
NO	C11a	1,466(2)	N9	C18	1.483(1)
NO	C11b	1.489(3)	N9	C28	1.479(1)
C1a	C2a	1.467(3)	C4	C5	1.417(2)
C15	C26	1, 556(4)	C14	C15	1.502(1)
C11a	C12a	1, 465(3)	C24	C25	1.476(2)
C11b	C12b	1.638(3)	C7	C8	1.526(1)
C21	C22a	1.159(3)	C17	C18	1.512(1)
C21	C226	1.503(3)	C27	C28	1.537(1)
C1a	C1b	0.693(3)	C12a	C12b	0. 973(3)
C11a	C11b	0.757(3)	C22a	C225	0.902(3)
C2a	C26	0.980(4)			
Cla	C5P	1.464(3)	Clia	C12b	1.307(3)
C1b	C2a	1.078(3)	C11b	C12a	1.272(3)

Table A. J. Additional distances (Å) in (2,2,2-crypt-K) Sb

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
03	ĸ	06	61.8(2)	023	к	NO	61.7(2)
03	к	NO	60.5(2)	06	к	N7	60.9(2)
013	к	016	60.8(2)	026	ĸ	N9	60.4(2)
013	к	NO	61.2(2)	016	ĸ	N9	60.5(1)
023	к	026	61.0(2)	NO	ĸ	N9	179. 6(2)
ĸ	03	C2a	115.4(10)	к	023	C24	109. 2(6)
к	03	C26	116.7(11)	C22a	023	C24	126.3(11)
к	03	C4	104.9(6)	C22b	023	C24	95.6(11)
C2a	03	C4	128.6(12)	к	06	C5	115.6(6)
С2Р	03	C4	95.3(13)	к	06	C7	119.3(5)
ĸ	013	C12a	118.1(9)	C5	06	C7	111.7(7)
к	013	C12b	113.4(9)	к	026	C25	114.7(5)
C12a	013	C14	124.7(10)	ĸ	026	C27	120.8(4)
к	013	C14	107.7(5)	C25	026	C27	112. 5(6)
C12b	013	C14	97.3(10)	к	016	C15	116.7(4)
ĸ	023	C22a	112.0(9)	к	016	C17	120.8(4)
ĸ	023	C22b	116.0(7)	C15	016	C17	110.8(6)
к	NO	C1a	112. 5(7)	C11a	NO	C21	118.7(11)
ĸ	NO	Cib	105.8(10)	C11b	NO	C21	94.4(12)
к	NO	C11a	109. 9(8)	к	N9	68	108.3(4)
к	NO	C11b	106.4(10)	к	N9	C18	108. 6(4)
ĸ	NO	C21	107.3(6)	к	N9	C28	107.6(4)
Cla	NO	C11a	109.4(13)	СВ	N9	C18	111.1(6)
Cib	NO	C11b	117.6(15)	C8	N9	C28	109.9(6)
C1a	NO	C21	96.5(12)	C18	N9	C28	109. 2(6)
C1b	NO	C21	122.3(13)				
NO	C1a	C2a	115.6(17)	03	C4	C5	111.4(11)
NO	C15	C2b	110.0(17)	013	C14	C15	108.0(7)
NO	C11b	C12b	105.6(17)	023	C24	C25	108. 2(9)
NO	C11a	C12a	119.8(15)	06	C5	C4	110.2(9)
NO	C21	C22a	128.4(15)	016	C15	C14	107.9(7)
NO	C21	C22b	120. 8(13)	026	C25	C24	111.0(8)
03	C2a	C1a	110.4(17)	06	C7	C8	106.7(7)
03	C2b	Cib	98. 8(19)	016	C17	C18	108.7(7)
013	C12b	C11b	97.2(15)	026	C27	C28	109.3(6)
013	C12a	C11a	107.8(15)	N7	C8	C7	112.7(7)
023	C22a	C21	122. 8(19)	N7	C18	C17	113.6(7)
023	C22b	C21	108.7(15)	N9	C28	C27	112.6(6)

Table A. 6. Additional angles (deg) in (2,2,2-crypt-K) Sb 2 4

Table A.7. Additional distances (Å) in (2,2,2-crypt-K) Sb .2en 3 7

Atom	Atom	Distance	Atom	Atom	Distance	Atom	Atom	Distance
К1	0103	2.87(1)	K2	0203	2.84(1)	КЗ	0303	2.85(1)
К1	0106	2.82(1)	K2	0206	2.76(1)	KЗ	0306	2.86(1)
K1	0112	2.75(1)	K2	0212	2.83(1)	KЗ	0312	2.85(1)
К1	0115	2.91(1)	K2	0215	2.81(2)	КЗ	0315	2.83(1)
К1	0120	2.87(1)	K2	0220	2.87(1)	КЗ	0320	2.83(1)
К1	0123	2.81(1)	K2	0223	2.88(2)	КЗ	0323	2.86(1)
K1	N100	2.99(1)	K2	N200	2.96(1)	KB	N300	2.92(1)
К1	N107	3.04(2)	K2	N209	2. 99(2)	КЗ	N309	2.87(1)
N100	C101	1.50(3)	N200	C201	1.47(2)	N300	C301	1.46(2)
N100	C110	1.51(3)	N200	C210	1.50(2)	N300	C310	1.50(2)
N100	C118	1.47(2)	N200	C218	1.44(2)	N300	C318	1.50(2)
N109	C108	1.49(3)	N209	C208	1.47(3)	N309	C308	1.50(2)
N107	C117	1.44(3)	N209	C217	1.45(3)	N307	C317	1.48(2)
N107	C125	1.50(3)	N209	C225	1.49(4)	N309	C325	1.47(2)
n103	C102	1.42(2)	0203	C202	1.43(2)	0303	C302	1.42(2)
0103	C104	1.45(2)	0203	C204	1.46(2)	0303	C304	1.45(2)
0106	C105	1 42(2)	0206	C205	1,42(3)	0306	C305	1.42(2)
0106	C107	1 43(2)	0206	0207	1 43(3)	0306	C307	1 44(2)
0112	C111	1 44(3)	0212	C211	1.46(2)	0312	C311	1.45(2)
0112	C113	1 44(3)	0212	C213	1.46(2)	0312	C313	1.42(2)
0115	C114	1.44(3)	0215	C214	1.38(3)	0315	C314	1.41(2)
0115	C116	1.48(3)	0215	C216	1.45(3)	0315	C316	1.43(2)
0120	C119	1.44(2)	0220	C219	1,44(3)	0320	C317	1, 42(2)
B120	C121	1.40(2)	0220	C221	1.44(3)	0320	C321	1.45(2)
0123	C122	1.42(2)	0223	C222	1.40(3)	0323	C322	1.43(2)
0123	C124	1.46(2)	0223	C224	1. 45(3)	0323	C324	1.42(2)
C101	C102	1 53(3)	C201	C202	1 55(3)	C301	0302	1 58(3)
C104	C105	1.52(3)	C204	0205	1.52(3)	0304	C305	1 51(3)
C107	C108	1.50(3)	C207	0208	1 57(4)	C307	0308	1 54(3)
C110	C111	1.54(3)	6210	0200	1 49(3)	C310	C311	1 55(3)
C113	C114	1.40(4)	C213	C214	1.53(3)	C313	C314	1.53(3)
C116	C117	1.50(3)	C216	C217	1.58(4)	C316	C317	1.52(3)
C118	C119	1.49(3)	C218	C219	1.55(3)	C318	0319	1.52(2)
C121	C122	1.51(3)	C221	0222	1 49(3)	0321	0322	1 51(2)
C124	C125	1 52(3)	C224	C225	1 52(4)	0324	0325	1 48(3)
· ·				~~~~				
NEN1	CEN1	1.50(4)	NEN3	CEN3	1.79(4)	Sb4	C107	3. 89(2)
CEN1	CEN2	1.64(4)	CENG	CEN4	1.24(6)	Sb 5	C221	3.71(2)
CEN2	NEN2	1.48(3)	CEN4	NEN4	1.74(5)	567	C321	3. 95(2)
						S b3	NEN1	3.90(3)

Atom	Atom	Atom	Angle,	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
N100	К1	N109	179. 5(4)	N200	к2	N209	178.3(5)	N300	КЗ	N309	179. 0(4)
N100	K1	0103	61.1(4)	N200	K2	0203	61.3(4)	N300	KЗ	0303	61.2(4)
N100	K1	0112	62.4(4)	N200	K2	0212	61.2(4)	N300	КЗ	0312	61.0(4)
N100	K1	0120	59.6(4)	N200	K2	0220	60.8(4)	N300	КЗ	0320	61.2(4)
N109	K1	0106	59. 5(4)	N209	K2	0206	59.8(4)	N309	КЭ	0306	62. 5(4)
N109	К1	0115	58.6(4)	N209	K2	0215	61.9(5)	N309	КЭ	0315	62.0(4)
N109	K1	0123	61.7(4)	N209	K2	0223	60.9(5)	N309	КЗ	0323	60.8(4)
0103	K1	0106	59.7(4)	0203	K2	0206	59.9(4)	0303	КЗ	0306	59.3(3)
0112	K1	0115	59. 9(4)	0212	K2	0215	60.0(4)	0312	кз	0315	59.6(4)
0120	K1	0123	60.0(3)	0220	K2	0553	58.4(4)	0320	КЗ	0323	59.1(3)
K1	N100	C101	108.1(11)	K2	N200	C201	109. 4(10)	KЗ	N300	C301	108. 6(10)
K1	N100	C110	108.1(11)	K2	N200	C210	107. 0(10)	KЗ	N300	C310	111.4(10)
K1	N100	C118	111.5(11)	K2	N200	C218	108.8(11)	КЗ	N300	C318	108. 4(10)
C101	N100	C110	108. 4(15)	C201	N200	C210	108.7(14)	C301	N300	C310	111.3(14)
C101	N100	C118	110.2(15)	C201	N200	C218	109. 3(15)	C301	N300	C318	109. 4(13)
C110	N100	C118	110. 4(15)	C210	N200	C218	111.6(14)	C310	N300	C318	107.6(14)
K1	N109	C108	108. 5(12)	К2	N209	C208	105.7(13)	КЗ	N309	C308	110.2(10)
K1	N109	C117	112. 4(12)	K2	N209	C217	108.0(14)	КЗ	N309	C317	110.0(10)
K1	N109	C125	106.2(11)	К2	N209	C225	107.3(15)	КЗ	N309	C325	110.2(10)
C108	N107	C117	109.7(16)	C208	N209	C217	114.9(19)	C308	N309	C317	107.9(13)
C108	N107	C125	110.8(16)	C208	N209	C225	108.7(19)	C308	N309	C325	109.6(14)
C117	N107	C125	109.2(16)	C217	N209	C225	111.8(10)	C317	N307	C325	108. 9(14)
К1	0103	C102	114.8(11)	K2	0203	C202	114. 5(10)	КЗ	0303	C302	119. 4(10)
К1	0103	C104	112.1(10)	К2	0203	C204	113.9(11)	КЗ	8303	C304	115.1(10)
C102	0103	C104	111.4(14)	C202	0203	C204	106.9(14)	C302	0303	C304	108. 2(14)
K1	0106	C105	117.7(10)	K2	0206	C205	119.1(11)	кз	0306	C305	116.0(10)
К1	0106	C107	118.7(11)	K2	0206	C207	123. 5(12)	КЗ	0306	C307	115. 9(10)
C105	0106	C107	109. 9(14)	C205	0206	C207	109.1(16)	C305	0306	C307	110.6(14)
К1	0112	C111	117.8(12)	к2	0212	C211	116.0(10)	KЗ	0312	C311	118.0(10)
K1	0112	C113	119. 5(13)	K2	0212	C213	115.1(10)	КЗ	0312	C313	116. 1(10)

Table A. 8. Additional angles (deg) in (2,2,2-crypt-K) Sb .2en 3 7

Table A. 8. Continued

Atom	Atom	Atom	Angle,	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
C111	0112	C113	111.0(17)	C211	0212	C213	110.0(14)	C311	0312	C313	109.9(14)
К1	0115	C114	109. 8(12)	к2	0215	C214	116.8(12)	кз	0315	C314	116.4(11)
К1	0115	C116	118. 5(12)	к2	0215	C216	117.3(13)	КЗ	0315	C316	117.8(10)
C114	0115	C116	116.7(16)	C214	0215	C216	109.8(18)	C314	0315	C316	111.1(14)
К1	0120	C119	116.7(10)	K2	0220	C219	116,9(12)	КЗ	0320	C319	118. 9(9)
K1	0120	C121	115.7(10)	K2	0220	C221	114.5(11)	КЗ	0320	C321	118.2(9)
C119	0120	C121	111.1(14)	C219	0220	C221	108.4(15)	C319	0320	C321	109. 6(12)
K1	0123	C122	115.0(10)	к2	0223	C222	117.9(12)	KЗ	0323	C322	116.8(9)
К1	0123	C124	115.2(10)	к2	0223	C224	117.4(15)	КЗ	0323	C324	117.3(9)
C122	0123	C124	109.6(14)	C222	0223	C224	111.5(19)	C322	0323	C324	110.7(12)
N100	C101	C102	112.1(17)	N200	C201	C202	113.1(16)	N300	C301	C302	112.7(14)
0103	C102	C101	108.6(16)	0203	C202	C201	106.5(15)	0303	C302	C301	107. 2(15)
0103	C104	C105	107.7(14)	0203	C204	C205	108.0(17)	0303	C304	C305	107. 2(15)
0106	C105	C104	107.4(15)	0206	C205	C204	107.3(18)	0306	C305	C304	109. 8(16)
0106	C107	C108	107.4(17)	0206	C207	C208	105. 5(18)	0306	C307	C308	108.7(15)
N109	C108	C107	111.3(18)	N209	C208	C207	108.4(19)	N309	C308	C307	113.4(15)
N100	C110	C111	113.2(17)	N200	C210	C211	112.6(15)	N300	C310	C311	111.6(16)
0112	C111	C110	109. 0(18)	0212	C211	C210	108.0(16)	0312	C311	C310	107. 7(16)
0112	C113	C114	110.6(21)	0212	C213	C214	107.8(16)	0312	C313	C314	110. 6(16)
0115	C114	C113	114.7(22)	0215	C214	C213	110.2(18)	0315	C314	C313	108. 9(16)
0115	C116	C117	107.0(18)	0215	C216	C217	108.3(21)	0315	C316	C317	110. 5(15)
N107	C117	C116	113.6(18)	N209	C217	C216	112.7(21)	N309	C317	C316	113.6(15)
N100	C118	C119	112.2(16)	N200	C218	C219	113.1(17)	N300	C318	C319	112. 6(14)
0120	C119	C118	109. 2(16)	0220	C219	C218	106.8(17)	0320	C319	C318	107. 8(14)
0120	C121	C122	108.8(15)	0220	C221	C222	109.3(17)	0320	C321	C322	109.7(14)
0123	C122	C121	111.6(16)	0223	C222	C221	110.3(18)	0323	C322	C321	109. 5(14)
0123	C124	C125	107.8(16)	0223	C224	C225	105. 6(23)	0323	C324	C325	109.2(15)
N109	C125	C124	112.7(17)	N209	C225	C224	115.4(24)	N309	C325	C324	113.9(15)
NEN1	CEN1	CEN2	104.1(21)	NEN3	CEN3	CEN4	86. 7(29)				
CEN1	CEN2	NEN2	104.4(21)	NEN4	CEN4	CEN3	90.7(30)				

Table A.9. Additional distances (Å) in (2,2,2-crypt-K) Sn .1.5en 3 9

Atom	Atom	Distance	Atom	Atom	Distance	Atom	Atom	Distance
K1	011	2. 909(16)	ĸz	021	2.831(15)	КЗ	031	2.805(13)
К1	012	2.833(18)	K2	022	2.840(13)	KЗ	032	2.830(13)
К1	013	2.815(14)	K2	023	2.844(13)	KЗ	033	2.878(13)
К1	014	2.824(18)	K2	024	2.809(12)	KЗ	034	2.798(14)
К1	015	2.831(15)	K2	025	2.787(14)	KЗ	035	2. 812(13)
К1	016	2. 777(17)	K2	026	2.802(13)	KЗ	036	2. 831 (13)
К1	N11	2.997(17)	K2	N21	2.979(18)	KЗ	N31	3.004(16)
К1	N12	3.011(25)	K2	N22	3.008(15)	KЗ	N32	3.030(14)
N11	C11	1.49(3)	N21	C21	1.50(3)	N31	C31	1.46(3)
N11	C17	1.46(3)	N21	C27	1.52(3)	N31	C37	1.48(2)
N11	C113	1.44(3)	N21	C213	1.47(3)	N31	C313	1.51(3)
N12	C16	1.47(4)	N22	C26	1.52(2)	N32	C36	1.47(2)
N12	C112	1.51(4)	N22	C212	1.49(3)	N32	C312	1.48(3)
N12	C118	1. 52(4)	N22	C218	1.50(3)	N32	C318	1.51(2)
011	C12	1.45(3)	021	C22	1.44(3)	031	C32	1.44(2)
011	C13	1.41(3)	021	C23	1.44(3)	031	C33	1.43(3)
012	C14	1.39(3)	022	C24	1.45(3)	032	C34	1.42(2)
012	C15	1.42(3)	022	C25	1.43(2)	032	C35	1.45(2)
013	C18	1.46(3)	023	C28	1.46(3)	033	C38	1.44(2)
013	C19	1.42(3)	023	C29	1.45(2)	033	C39	1.41(2)
014	C110	1.42(3)	024	C210	1.45(2)	034	C310	1.44(2)
014	C111	1.41(3)	024	C211	1.40(3)	034	C311	1.48(3)
015	C114	1.42(3)	025	C214	1.41(3)	035	C314	1.41(3)
015	C115	1.41(3)	025	C215	1.41(2)	035	C315	1.45(2)
016	C116	1.42(3)	026	C216	1.42(2)	036	C316	1.45(2)
016	C117	1.45(3)	026	C217	1.41(2)	036	C317	1.45(2)
C11	C12	1. 53(3)	C21	C22	1.44(4)	C31	C32	1.53(3)
C13	C14	1.43(4)	C23	C24	1.41(4)	C33	C34	1.50(3)
C15	C16	1.57(4)	C25	C26	1.52(3)	C35	C36	1.48(3)
C17	C18	1.55(3)	C27	C28	1.52(4)	C37	C38	1.46(3)
C19	C110	1.53(4)	C29	C210	1.47(3)	C37	C310	1.47(3)
C111	C112	1.56(4)	C211	C212	1.55(3)	C311	C312	1.46(3)
C113	C114	1. 55(3)	C213	C214	1.49(3)	C313	C314	1.56(3)
C115	C116	1.43(4)	C215	C216	1.48(3)	C315	C316	1.52(3)
C117	C118	1.52(5)	C217	C218	1.49(3)	C317	C318	1. 49(3)
9n8	NEN2	3.71(8)	NEN1	CEN1	1.13(12)	NEN3	CEN3	1.36(14)
Sn7	C316	3, 78(2)	CEN1	CEN2	1.45(9)	CEN3	CEN3	1.92(21)
5n6	C111	3. 91 (3)	CEN2	NEN2	1.82(8)	CEN3	NEN3	1.56(14)
						the second se		

Atom Angle Atom Atom Atom Atom Atom Angle Atom Atom Atom Angle K1 178.2(6) K2 N22 178.2(4) N31 КЗ N32 179.2(4) N11 N12 N21 K1 59.9(4) к2 021 КЗ 031 59.7(4) N11 011 N21 62.1(4) N31 N11 К1 013 61.0(4) N21 K2 023 60.6(4) N31 КЗ 033 60.2(4) K2 025 N31 035 N11 K1 015 61.7(4) N21 60.6(4) КЗ 61.3(4) N12 K1 012 60.7(6) N22 K2 022 60.5(4) N32 КЗ 032 61.0(4) 014 61.5(6) N22 K2 024 59.2(4) N32 КЗ 034 60.3(4) N12 K1 N22 K2 026 60.7(4) N32 КЗ 036 59.9(4) N12 K1 016 60.3(6) 012 57.9(5) 021 К2 022 59.8(4) 031 КЗ 032 59.6(4) 011 K1 014 59.5(4) 023 K2 024 59.9(4) 033 КЗ 034 59.5(4) 013 K1 015 K1 016 59.2(5) 025 K2 026 59.3(4) 035 κз 036 60.2(4) C21 106. 5(14) КЗ N31 C31 K1 N11 C11 110.1(12) K2 N21 111.5(11) C27 N31 C37 K1 N11 C17 108.2(12) К2 N21 110.0(13) КЗ 108.2(10) C213 108.9(12) κз N31 C313 **K**1 N11 C113 107.1(12) К2 N21 107.3(11) C37 C17 109.9(16) C21 N21 C27 113.0(18) C31 N31 107.0(15) C11 N11 C113 109.1(16) C21 N21 C213 111.5(18) C31 N31 C313 111.6(15) C11 N11 C313 109.2(15) C113 112.3(17) C27 N21 C213 106.9(17) C37 N31 C17 N11 K1 C16 108.0(17) К2 N22 C26 109.6(10) κз N32 C36 107.5(10) N12 K1 N12 C112 105.6(16) К2 N22 C212 109.9(11) КЗ N32 C312 108.3(11) C318 111.1(10) **K1** N12 C118 107.0(18) K2 N22 C218 107.6(11) КЗ N32 C312 111.4(15) C16 N12 C112 108. 9(23) C26 N22 C212 108.2(15) C36 N32 C118 114.3(24) C16 N12 C26 N22 C218 107.7(14) C36 N32 C318 109.8(14) 113.8(15) C312 N32 C318 108.7(14) C112 N12 C118 112.6(24) C212 N22 C218 C22 КЗ 031 C32 119.4(11) K1 011 C12 116.3(13) K2 021 114.6(12) C23 КЗ 031 C33 115. 5(12) **K1** 011 C13 113.2(13) K2 021 111.3(13) C32 031 C33 110.7(15) C12 011 C13 111.7(18) C22 021 C23 114.3(17) **K1** 012 C14 117.0(15) 022 C24 113.3(12) κз 032 C34 111.8(10) K2 C35 113.6(10) C15 022 C25 114.0(11) κз 032 K1 012 118.7(15) K2 C14 012 C15 112.5(21) 022 C25 112.0(16) C34 032 C35 107.3(14) C24 K1 013 C18 114.7(12) K2 023 C28 115.6(14) кз 033 C38 114.5(11) K1 C19 023 C29 110.7(11) КЗ 033 C39 112.4(11) 013 115.8(13) К2

Table A. 10. Additional angles (deg) in (2,2,2-crypt-K) Sn . 1.5en

Table A. 10. Continued

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
C18	013	C19	110.3(17)	C28	023	C29	103.8(18)	C38	033	C39	112.7(15)
K1	014	C110	115.3(14)	K2	024	C210	116.0(10)	КЗ	034	C310	114. 9(11)
К1	014	C111	115.8(14)	К2	024	C211	121.5(12)	KЗ	034	C311	119.6(11)
C110	014	C111	105.8(19)	C210	024	C211	107.4(15)	C310	034	C311	109. 6(15)
K1	015	C114	114.7(13)	К2	025	C214	117.8(12)	КЗ	035	C314	119.6(12)
K1	015	C115	112. 6(13)	K2	025	C215	121.4(11)	КЗ	035	C315	112.4(10)
C114	015	C115	109. 8(18)	C214	025	C215	112.0(15)	C314	035	C315	109. 9(15)
K1	016	C116	117.8(14)	K2	026	C216	111.7(10)	KЗ	036	C316	116. 5(10)
К1	016	C117	115.5(15)	K2	026	C217	119.3(10)	КЗ	036	C317	115.0(10)
C116	016	C117	111.6(20)	C216	026	C217	110. 5(13)	C316	036	C317	107.1(14)
N11	C11	C12	113.3(18)	N21	C21	C22	114.8(22)	N31	C31	C35	114. 4(17)
011	C12	C11	105. 5(18)	021	C22	C21	111.6(21)	031	C32	C31	107. 4(16)
011	C13	C14	108. 9(21)	021	C23	C24	108.5(21)	031	C33	C34	107.6(17)
012	C14	C13	111.8(23)	022	C24	C23	109.4(21)	032	C34	C33	105. 5(16)
012	C15	C16	105.3(23)	022	C25	C26	107.4(17)	032	C35	C36	109. 2(16)
N12	C16	C15	113.8(25)	N22	C26	C25	110. 4(16)	N32	C36	C35	113.1(16)
N11	C17	C18	112.1(19)	N21	C27	C28	112.0(21)	N31	C37	C38	116.1(16)
013	C18	C17	104.6(18)	023	C28	C27	106.1(23)	033	C38	C37	107. 0(16)
013	C19	C110	109.5(21)	023	C29	C210	107.3(17)	033	C37	C310	109. 2(17)
014	C110	C19	105.8(21)	024	C210	C29	107.2(16)	034	C310	C39	107.7(16)
014	C111	C112	104.5(21)	024	C211	C212	105. 9(18)	034	C311	C312	107. 5(17)
N12	C112	C111	111.6(24)	N22	C212	C211	111.4(18)	N32	C312	C311	117.6(18)
N11	C113	C114	114.0(19)	N21	C213	C214	114. 5(19)	N31	C313	C314	113.1(17)
015	C114	C113	107. 9(19)	025	C214	C213	109.0(18)	035	C314	C313	107. 5(18)
015	C115	C116	110.0(22)	025	C215	C216	106.6(16)	035	C315	C316	108. 9(16)
016	C116	C115	110. 4(22)	026	C216	C215	113. 2(16)	036	C316	C315	105. 5(15)
016	C117	C118	103.6(24)	026	C217	C218	109.5(16)	036	C317	C318	109. 0(16)
N12	C118	C117	107.7(26)	N22	C218	C217	114.6(17)	N32	C318	C317	111.7(16)
NEN1	CEN1	CEN2	108(8)	CEN3	CEN3	NEN3	54(6)				
CEN1	CEN2	NEN2	86(4)								

Atom C Gel 2 Ge2 2 Ge1 1	istance .769(8) .793(9)	Atom Gel Gel	Atom Ge2'	Distance 1.946(7)
9e1 2 9e2 2 Se1 4 1	. 769(8) . 793(9)	Ge1 Ge1	Ge2'	1.946(7)
e2 2 2e1′ 1	. 793(9)	Ge 1	_	
Sel' 1			Gel'	3. 408(10)
	. 987(7)	Ge2	Ge2′	3. 400(19)
)1 2	. 674(9)	Na	N1	3. 205(16)
)2 2	. 500(8)	Na	N2	2. 784(15)
: 1 1	. 473(12)	C4	02	1.415(13)
2 1	. 507(16)	02	60	1.433(11)
01 1	. 461(12)	63	C6	1. 537(15)
3 1	. 441(14)	C6	N2	1. 485(12)
.4 1	. 529(16)			
	1 2 2 2 1 1 2 1 1 1 2 1 1 1 3 1 4 1	1 2.674(9) 2 500(8) 1 1.473(12) 2 1.507(16) 1 441(12) 3 1.441(14) 4 1.529(16)	1 2.674(9) Na 2 2.500(8) Na 1 1.473(12) C4 2 1.507(16) D2 01 1.461(12) C5 13 1.441(14) C6 4 1.529(16) C4	1 2.674(9) Na N1 2 2.500(8) Na N2 1 1.473(12) C4 02 2 1.507(16) 02 C3 01 1.461(12) C5 C6 03 1.441(14) C6 N2 4 1.529(16) 1 1

Table A. 11. Distances (Å) in (2,2,2-crypt-Na) Ge

Table A.12. Angles (deg) in (2,2,2-crypt-Na) Ge

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
Ge1	Ge1	Ge2	60.3(1)	Ge 1	Ge2	Ge 1	59.4(2)
Ge1	Ge1	Ge 1	60. O				
N1	Na	N2	180. 0	N2	Na	02	64.8(2)
N1	Na	01	58.8(2)	01	Na	02	65.0(2)
Na	N1	Ci	107. 9(6)	Na	02	C4	118.6(6)
Na	01	C2	123.9(7)	Na	02	C5	121.0(6)
Na	01	СЗ	77 .3(6)	Na	N2	C6	108. 5(6)
C1	N1	Ci	111.0(6)	СЗ	C4	02	107.7(9)
N1	C 1	C2	111.2(9)	C4	02	C5	109.0(7)
C1	C2	01	112.5(10)	02	C5	C6	107.3(8)
C2	01	СЗ	112.5(8)	C5	C6	N2	110. 9(8)
01	сз	C4	106. 6(9)	60	N2	C6	110. 4(6)

Atom	Atom	Distance									
Lil	0103	2.30(7)	Li2	0203	2.02(8)	Li3	0303	2.07(7)	L14	0403	2.23(9)
Li1	0106	2.08(7)	Li2	0206	2.05(8)	Li3	0306	2. 13(7)	Li4	0406	2.04(8)
Li1	0112	2. 13(7)	L12	0212	2.28(8)	Li3	0312	2.11(7)	Li4	0412	2.08(8)
Li1	0117	2.05(6)	Li2	0217	2.09(8)	Li3	0317	2.21(7)	L14	0417	2. 10(8)
Li1	N100	2.36(7)	L12	N200	2.37(7)	L13	N300	2.30(8)	Li4	N400	2.31(8)
Li1	N109	2.32(7)	L12	N209	2. 40(8)	Li3	N309	2.21(7)	Li4	N409	2.24(9)
N100	C101	1,28(6)	N200	C201	1. 57(7)	N300	C301	1. 57(6)	N400	C401	1.44(6)
C101	C102	1.70(7)	C201	C202	1.52(7)	C301	C302	1.58(7)	C401	C402	1.61(6)
C102	0103	1.33(6)	C202	0203	1.45(6)	C302	0303	1.35(6)	C402	0403	1.54(5)
0103	C104	1.34(5)	0203	C204	1.31(6)	0303	C304	1.59(6)	0403	C404	1.50(5)
C104	C105	1.41(6)	C204	C205	1.50(7)	C304	C305	1.47(6)	C404	C405	1. 47(6)
C105	0106	1. 43(5)	C205	0206	1.51(6)	C305	0306	1.46(6)	C405	0406	1.65(6)
0106	C107	1.30(6)	0206	C207	1.43(6)	0306	C307	1.40(5)	8406	C407	1.46(5)
C107	C108	1.56(7)	C207	C208	1.39(6)	C307	C308	1.49(7)	C407	C408	1. 47(6)
C108	N109	1.47(6)	C208	N209	1.47(6)	C308	N307	1.50(6)	C408	N409	1. 52(6)
N109	C110	1.51(6)	N209	C210	1.55(7)	N309	C310	1.53(6)	N409	C410	1. 43(6)
C110	C111	1.53(7)	C210	C211	1.61(8)	C310	C311	1.60(7)	C410	C411	1. 32(8)
C111	0112	1.44(6)	C211	0212	1.43(6)	C311	0312	1.45(5)	C411	0412	1.60(6)
0112	C113	1.38(5)	0212	C213	1.54(6)	0312	C313	1.56(6)	0412	C413	1.51(6)
C113	C114	1.45(6)	C213	C214	1.62(7)	C313	C314	1.47(6)	C413	C414	1.40(7)
C114	N100	1.65(6)	C214	N200	1.36(7)	C314	N300	1.49(6)	C414	N400	1. 54(6)
N100	C115	1.38(6)	N200	C215	1.36(7)	N300	C315	1.46(6)	N400	C415	1. 52(6)
C115	C116	1.46(7)	C215	C216	1.46(9)	C315	C316	1.50(7)	C415	C416	1. 57(6)
C116	0117	1.53(5)	C216	0217	1.35(7)	C316	0317	1.40(5)	C416	0417	1. 48(5)
0117	C118	1.49(5)	0217	C218	1.56(6)	0317	C318	1.43(5)	0417	C418	1.47(6)
C118	C119	1.46(6)	C218	C219	1.51(8)	C318	C319	1.44(8)	C418	C419	1.53(6)
C119	N109	1.44(6)	C219	N209	1.45(6)	C317	N307	1. 54(8)	C419	N409	1. 47(6)
Sn4A	C313	3.84(5)	Sn7A	C215	3. 87(7)	Sn78	C214	3. 83(6)	Sn9A	C416	3. 74(5)
Sn4A	C405	3.83(4)	Sn7A	C308	3.87(5)	Sn7B	C215	3.83(7)	Sn9B	C215	3. 87(6)

•

Table A. 12. Additional distances (Å) in (2,1,1-crypt-Li) Sn 4 9

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
Sn2	Sn1	Sn6A	64.2(2)	Sn2	Sn6A	Sn7A	55.1(2)	Sn5A	Sn8	Sn9A	54.3(2)	Sn 1	Sn6A	Sn2	57.3(2)
Sn4A	Sn1	Sn5A	61.5(2)	Sn2	Sn7A	Sn6A	60. 9(2)	Sn7A	Sn8	Sn9A	56.0(2)	Sn2	Sn7A	Sn3A	58.3(2)
Sn 1	Sn2	Sn6A	58. 5(2)	Sn8	Sn7A	Sn3A	55.2(2)	Sn 5A	Sn9A	Sn6A	65.2(2)	Sn3A	Sn8	Sn4A	57.8(2)
Sn3A	Sn2	Sn7A	61.1(2)	Sn3A	Sn8	Sn7A	57.9(2)	Sn8	Sn9A	Sn 5A	69.2(2)	Sn2	Sn1	Sn4A	91.7(2)
Sn2	Sn3A	Sn7A	60.6(2)	Sn4A	Sn8	Sn 5A	55.3(2)	Sn6A	Sn9A	Sn7A	66.9(2)	Sn1	Sn2	Sn3A	86. 2(2)
Sn8	Sn3A	Sn4A	63.2(2)	Sn6A	Sn 5 A	Sn9A	57.6(2)	Sn8	Sn9A	Sn7A	65.6(2)	Sn2	Sn3A	Sn4A	94.1(3)
Sn 1	Sn4A	Sn 5A	59.7(2)	Sn8	Sn5A	Sn9A	56.5(2)	Sn 5A	Sn1	Sn6A	64.7(2)	Sn1	Sn4A	Sn3A	88.0(3)
Sn8	Sn4A	Sn3A	59.0(2)	Sn 5A	Sn6A	Sn9A	57.2(2)	Sn6A	Sn2	Sn7A	64.0(2)	Sn8	Sn 3A	Sn6A	91.2(2)
Sn 1	Sn5A	Sn6A	58. 5(2)	Sn7A	Sn6A	Sn9A	56.4(2)	Sn8	Sn3A	Sn7A	66.8(2)	Sn 5A	Sn6A	Sn7A	89.7(2)
Sn8	Sn5A	Sn4A	55.9(2)	Sn6A	Sn7A	Sn9A	56.7(2)	Sn8	Sn4A	Sn 5A	68.8(2)	Sn8	Sn7A	Sn6A	92.7(2)
Sn1	Sn6A	Sn 5A	56.8(2)	Sn8	Sn7A	Sn9A	58.3(2)	Sn1	Sn 5 A	Sn4A	58.8(2)	Sn5A	Sn8	Sn7A	86. 4(2)
Sn2	Sn1	Sn3B	52.4(2)	Sn2	Sn3B	Sn7B	58. 6(2)	SnS	Sn7B	Sn3B	58.1(2)	Sn3B	Sn 1	Sn 5B	88. 2(2)
Sn3B	Sn1	Sn4B	50.8(2)	Sn8	Sn3B	Sn4B	57.8(3)	Sn3B	Sn8	Sn7B	60.0(2)	Sn3B	Sn1	Sn6B	84. 3(2)
Sn 1	Sn3B	Sn2	51.0(2)	Sn1	Sn5B	Sn4B	61.9(3)	Sn1	Sn2	Sn6B	64.6(2)	Sn1	Sn3B	Sn78	88. 9(3)
Sn 1	Sn3B	Sn4B	52. 5(3)	Sn6B	Sn5B	Sn9B	59.2(2)	Sn3B	Sn2	Sn7B	61.0(3)	Sn1	Sn3B	Sn8	90.0(3)
Sn8	Sn 5B	Sn4B	50.7(3)	Sn1	Sn6B	Sn2	60.1(2)	Sn 1	Sn4B	Sn 5B	60.2(3)	Sn1	Sn5B	Sn8	91.8(2)
Sn8	Sn5B	Sn9B	50.0(2)	Sn 38	Sn6B	Sn9B	59. 5(2)	Sn8	Sn4B	Sn3B	61.5(3)	Sn8	Sn 5B	Sn6B	86.6(2)
Sn2	Sn6B	Sn7B	56.8(2)	Sn2	Sn7B	Sn3B	60. 4(2)	Sn8	Sn9B	Sn7B	64.4(2)	Sn1	Sn6B	Sn7B	95.1(2)
Sn7B	Sn6B	Sn9B	55.3(2)	Sn8	Sn7B	Sn9B	56.1(2)	Sn 5B	Sn9B	Sn6B	61.4(3)	Sn 5B	Sn6B	Sn7B	94.3(3)
Sn2	Sn7B	Sn6B	52. 5(2)	Sn3B	Sn8	Sn4B	60.7(3)	Sn1	Sn2	Sn3B	76.6(2)	Sn3B	Sn7B	Sn6B	91.7(3)
Sn6B	Sn7B	Sn9B	56.1(2)	Sn78	SnB	Sn9B	39. 4(2)	Sn6B	Sn2	Sn7B	70.8(2)	Sn8	Sn7B	Sn68	90.8(2)
Sn4B	Sn8	Sn 5B	51.7(3)	Sn 5B	Sn1	Sn6B	60.2(2)	Sn1	Sn4B	Sn3B	76.7(3)	Sn3B	Sn8	Sn58	90.0(2)
SnJB	Sn8	Sn9B	53. 5(2)	Sn8	Sn3B	Sn7B	61.8(2)	Sn8	Sn4B	Sn5B	77. 5(3)	Sn 5B	Sn8	Sn7B	88.4(2)
Sn2	Sn1	Sn6B	55. 3(2)	Sn1	Sn 5B	Sn6B	61.6(2)	Sn8	Sn9B	Sn 5B	76. 5(3)	Sn2	Sn1	Sn4B	100. 7(2)
Sn4B	Sn1	Sn 5B	57.9(3)	Sn 1	Sn6B	Sn 5B	58.1(2)	Sn6B	Sn9B	Sn7B	68.7(3)	Sn2	Sn3B	Sn4B	101.0(4)
N100	L11	0103	74(2)	N200	Li2	0203	80(3)	N300	L13	0303	78(2)	N400	Li4	0403	73(3)
N100	L11	N107	138(3)	N200	Li2	N209	128(4)	N300	Li3	N309	128(3)	N400	Li4	N409	136(4)
N100	Li1	0112	81(2)	N200	Li2	0212	76(3)	N300	Li3	0312	80(3)	N400	Li4	0412	77(3)

Table A.14. Angles (deg) in (2,1,1-crypt-Li) Sn 4 9

Table A.14. Continued

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Ang 1 e
N100	Li1	0117	81(2)	N200	Li2	0217	77(3)	N300	Li3	0317	76(2)	N400	L14	0417	80(3)
0103	Li1	0106	72(2)	0203	Li2	0206	77(3)	0303	L13	0306	79(3)	0403	Li4	0406	75(3)
0106	Lil	N109	77(2)	0206	Li2	N209	75(3)	0306	Li3	N309	75(2)	0406	Li4	N409	77(3)
N109	Lii	0112	79(2)	N209	Li2	0212	78(3)	N309	Li3	0312	77(2)	N409	Li4	0412	84(3)
N109	L11	0117	81(2)	N209	Li2	0217	78(3)	N309	Li3	0317	78(2)	N409	Li4	0417	79(3)
C101	N100	C114	112(3)	C201	N200	C214	111(4)	C301	N300	C314	114(3)	C401	N400	C414	122(4)
C101	N100	C115	121(4)	C201	N200	C215	106(4)	C301	N300	C315	107(4)	C401	N400	C415	105(3)
C114	N100	C115	111(3)	C214	N200	C215	116(4)	C314	N300	C315	119(4)	C414	N400	C415	111(3)
C108	N109	C110	108(3)	C208	N209	C210	119(4)	C308	N309	C310	106(4)	C408	N409	C410	115(3)
C108	N109	C119	120(3)	C208	N209	C219	117(4)	C308	N309	C319	112(4)	C408	N409	C419	109(3)
C110	N107	C119	111(4)	C210	N209	C219	107(4)	C310	N309	C319	108(4)	C410	N409	C419	114(4)
N100	C101	C102	109(4)	N200	C201	C202	112(4)	N300	C301	C302	108(4)	N400	C401	C402	102(3)
C101	C102	0103	106(4)	C201	C202	0203	113(4)	C301	C302	0303	105(4)	C401	C402	0403	99(3)
C102	0103	C104	113(4)	C202	0203	C204	117(4)	C302	0303	C304	117(3)	C402	0403	C404	107(3)
0103	C104	C105	111(4)	0203	C204	C205	107(4)	0303	C304	C302	104(3)	0403	C404	C405	109(3)
C104	C105	0106	105(3)	C204	C205	0206	102(4)	C304	C305	0306	111(4)	C404	C405	0406	100(3)
C105	0106	C107	115(3)	C205	0206	C207	114(3)	C305	0306	C307	118(3)	C405	0406	C407	112(3)
0106	C107	C108	117(4)	0206	C207	C208	108(4)	0306	C307	C308	110(4)	0406	C407	C408	107(3)
C107	C108	N109	107(4)	C207	C208	N209	109(4)	C307	C308	N309	101(4)	C407	C408	N409	110(3)
N109	C110	C111	109(4)	N207	C210	C211	109(4)	N309	C310	C311	97(3)	N409	C410	C411	117(5)
C110	C111	0112	109(4)	C210	C211	0212	112(4)	C310	C311	0312	112(3)	C410	C411	0412	117(4)
C111	0112	C113	113(3)	C211	0212	C213	106(3)	C311	0312	C313	112(3)	C411	0412	C413	102(3)
0112	C113	C114	113(4)	0212	C213	C214	104(4)	0312	C313	C314	102(4)	0412	C413	C414	7 8(4)
N100	C114	C113	110(3)	N200	C214	C213	115(4)	N300	C314	C313	110(4)	C413	C414	C415	98(3)
N100	C115	C116	118(4)	N200	C215	C216	109(5)	N300	C315	C316	113(4)	N400	C415	C416	112(3)
C115	C116	0117	105(3)	C215	C216	0217	123(5)	C315	C316	0317	110(4)	C415	C416	0417	105(3)
C116	0117	C118	117(3)	C216	0217	C218	117(4)	C316	0317	C318	112(3)	C416	0417	C418	112(3)
0117	C118	C119	110(3)	0217	C218	C219	104(4)	0317	C318	C319	103(4)	0417	C418	C419	101(3)
N109	C119	C118	112(4)	N209	C219	C218	109(4)	N309	C319	C318	113(5)	N409	C419	C418	112(4)

APPENDIX B: CALCULATED AND OBSERVED STRUCTURE FACTORS (x10) FOR $(2,2,2-crypt-K^+)_2Pb_2Sb_2^{2-} \cdot en$

	1 -	-14		7	2	705	700	5		274	200		1		-4 -7	404	477	-2-12	747	404		0	1045	1040
	<u>د</u>	-14	-		<pre>4</pre>	100	700	5	-		200		· -1		-0-/	004	072	-2-12	307	400	-		1043	1797
н	- N	FU	FC		3	201	224		2	111/	424	HA	FU	FU	-0-0	329	2/4	-2-11	432	4//	1	10	1014	1007
9	0	284	291	8	1	616	518	6	0	209	500	1 0	2447	1949	-6 -5	503	4/4	-2 -9	1223	1282	1	11	895	933
9	2	426	369	8	2	758	710	- 6	1	379	305				-6 -4	592	603	-2 -8	253	204	1	13	526	487
10	0	366	389	8	з	294	304	6	2	290	336	٤.	• 0		-6 -3	904	863	-2 -7	1732	1775	1	14	748	619
10	1	404	365	8	4	721	715	6	з	548	601	нк	FO	FC	-6 -2	683	739	-2 -6	588	619	1	15	897	785
				9	Â.	381	469	7	0	497	390	-12 -8	432	461	-6 -1	1166	1135	-2 -5	853	849	1	16	700	477
	1	-13		ò	÷.	301	350		ĩ	1198	1118	-12 -6	276	245	-5-20	337	232	-2 -4	764	754		17	944	774
	<u> </u>	120	50		2	004	240	<u></u>	-	204	240		214	240		207	270		078	004	•	16	404	244
	2	P D	FC	10	2	204	277		-	200	240	-12 -5	314	004	-3-17	37/		-2-3	7/3	700		10	-0-	300
¥	<u> </u>	33/	327	10	2	400	383		3	404	OUR	-12 -4	313	391	-2-18	443	43/	-2-2	424	443	1	14	2/4	444
9	2	481	406	10	3	391	373	8	0	1698	1506	-12 -2	461	504	~5-16	483	504	-2 -1	1803	1666	1	20	331	229
10	1	496	432	10	4	406	351	8	1	274	183	-11 0	308	279	~5-15	417	424	-1-20	338	225	1	24	351	196
10	3	385	328	10	5	509	434	8	2	1144	1069	-11-11	429	429	-5-13	431	362	-1-19	452	444	5	0	276	289
10	5	308	177	11	0	462	402					-11 -9	351	380	-5-12	723	779	-1-18	354	315	2	1	1864	1760
11	õ	414	336	11	Ť	399	324		L =	-6		-11 -7	397	390	-5-11	569	629	-1-17	781	798	2	2	463	443
	ĩ	344	202		÷	742	400			ĒO	FC	-11 -5	557	500		944	002	-1-14	509	508			1023	1016
	-	207	007		-	070	0.00		2	~~~	202			414	- 5 10	040	202	-1-10	700	704	-		001	7/7
11	~	« 0/	ر دیے	15	1	2/4	293	- 7		209	202	-11 -3	047	017	-5-4	315	273	-1-15	/74	/00	<u> </u>	- 2 -	041	/0/
	_					_		- 1	1	1369	1182	-11 -1	202	537	~5 -8	725	//4	-1-14	730	000	2	2	RA1	843
	L =-	-12			L =	-9		5	0	486	440	-10-12	274	339	-5 -7	605	684	-1-13	506	526	2	6	661	624
н	ĸ	FO	FC	н	ĸ	FO	FC	5	1	968	905	-10-10	271	267	-5 -6	933	928	-1-11	870	673	2	7	1694	1757
8	0	258	178	6	0	910	861	5	2	747	711	-10 -6	352	400	-5 -5	1190	1264	-1-10	982	998	2	8	251	242
8	1	290	264	6	1	864	776	5	3	332	369	-10 -4	302	351	-5 -4	946	925	-1 -9	1792	1938	2	9	1351	1322
8	3	304	245	6	5	739	622	Ā	ō	237	156	-10 -2	431	432	-5 -3	1283	1304	-1 -8	1882	1995	2	10	288	296
ŏ	Ā	404	462	7	2	004	017	ž		1504	1441	-10 -1	404	404		1018	040	-1 -7	2270	2270		4.4	532	514
	Ŷ	404	433	<u> </u>	÷	770	717	,		1.704	1401	-10 -1	400	777	-3-2	1015	740	-1 -/		23/0		10	000	300
10	1	435	367	<u> </u>	1	434	460	0	¥.	22/	232	-9-16	316	184	-5 -1	2/1	304	-1 -0	1048	110/	<u>ح</u>	14	302	330
10	3	324	331	7	2	1072	1010	6	3	633	538	-9-15	326	328	-4-21	369	253	-1 -5	1083	1131	2	12	520	607
11	0	377	402	- 7	3	566	565	7	Ó	1292	1159	-9-13	269	264	-4-19	331	374	-1 -4	626	642	2	17	708	602
11	2	324	347	7	4	1057	1007	7	1	1100	1068	-9 -9	327	240	-4-18	310	230	-1′-3	1475	1510	2	19	418	311
11	з	336	224	8	1	561	602					-9 -7	374	399	-4-15	665	697	-1 -2	1867	1933	Э	0	1370	1202
12	5	403	406	Â	ā	426	499		L =	-5		-9 -6	286	275	-4-14	405	390	-1 -1	2466	2197	Э	1	1591	1439
	-			Ā	Ā	680	438	L	_	ĒO	EC	-9 -4	249	277	-4-13	880	866	ō ž	2354	2837	- 3	2	21.49	1958
		_ 4 4		ž	7	44.0	000						2077			840	417		1000	1074	ž		607	84.2
	 -	-11	~~	~	~	400	3/4	- 7	v.	11/7	1101	-7 -3	30⊄	345	~	342			1720	1760	3		100/	1006
н	ĸ	FO	FC	9	2	518	501	4	1	1663	1526	-9 -1	522	518	-4-11	1053	1123	0 6	3154	3130	3	- 2	1889	1825
7	0	255	305	9	3	373	313	- 4	23	2036	1910	-8-17	398	320	-4-10	639	717	08	3286	3320	3		210	174
7	1	464	387	10	2	356	301	5	Ö	792	737	-8-15	376	365	-4 -9	687	706	0 10	2037	1967	3	6	580	588
7	2	368	304	10	3	257	235	5	1	1237	1141	-8 -9	568	599	-4 -8	723	734	0 12	1077	913	3	7	791	793
8	0	401	409					5	2	893	890	-8 -8	279	252	-4 -7	1162	1247	0 14	1139	947	3	8	475	533
A	Á.	563	547			-8		-	-			-8 -7	802	831	-4 -6	884	921	0 16	1452	1184	3	9	902	866
ö	ċ	324	100	`	~ <u>~</u>	50	FC			-4		-9 -6	202	434	-4 -5	2043	2117	0 19	057	712	3	10	504	466
~ ~	ž	384	170		2	070	0.00				50	-0 -0	373	730		4440	1107		408	202	ž	11	343	324
	<pre></pre>	331	320	<u>,</u>		8/0	830		<u> </u>	FU	PC.	-8 -5	300	343		1110	1102	0 20		203	3	10	1014	007
	-	342	340	•	1	414	305	3	0	1981	1455	-8 -4	452	436	-4-3	1023	1387	0 24	300	231	2	14	1010	773
10	0	292	302	6	2	564	512	3	1	1945	1678	-8 -3	551	594	-4 -2	740	675	0-24	374	243	3	14	674	612
10	1	472	417	6	з	967	919	- 4	0	626	543	-8 -2	284	288	-4 -1	2064	1927	0-18	772	722	3	15	397	340
10	2	348	325	7	0	375	404	- 4	1	1626	1562	-8 -1	785	809	-3-15	326	313	0-16	1179	1239	3	16	310	249
10	4	373	392	7	1	815	797	• 4	2	856	838	-7-18	365	295	-3-14	577	555	0-14	887	924	Э	17	323	197
11	Ó	411	314	7	2	748	837	•	-			-7-16	461	464	-3-12	938	970	0-12	933	952	4	0	412	331
11		202	377	7	5	244	254			-7		-7-14	280	200	-3-11	228	401	0-10	1010	2041	Á		2028	1843
	-	302	3/7			300	330		Ľ"-	-3	~~	-7-14	307	377		030		0.10	2044	2260		â	774	443
	-	300	304		1	701	403	H	ĸ	FU	FC	-/-10	790	/ 74	-3-10	3/3	336	0-8	3081	3330	- 7	-	1700	1477
11	3	440	434	8	0	710	622	- 2	Q	1711	1518	-7 -9	277	266	-3 -9	867	860	0 -6	3326	3345		3	1/00	102/
11	5	542	552	8	1	664	594	3	0	2151	1829	-7 -8	1147	1205	-3 -8	390	466	0 -4	2153	2125	4	4	1187	1129
12	1	386	358	8	2	454	441	3	1	942	858	-7 -6	704	724	~3 -7	707	711	1 0	2125	1892	- 4	5	2166	2119
12	З	462	472	8	3	437	467					-7 -3	552	555	-3 -6	394	333	1 1	2480	2410	- 4	6	906	879
12	4	447	375	9	ō	839	754		1 =	-2		-7 -2	943	1012	-3 -4	2032	2006	1 2	1868	1959	- 4	7	1269	1230
12	Ś	439	432	ó	ĩ	524	454	ц	- <u>-</u> -	-	FC	-4-17	510	414	-3 -3	500	552	1 7	1478	1596	, i	8	715	684
12	ž	707	777		-		480		2	224	220	-0-17	244	202	-0-3	270	7033		470	717		ā	727	748
13	~	27/	ddd.	*	2	0/3	020	2	U V	324	5/8	-0-12	340	ل کول	-3-2	220U	2033		000	110/	7	• •	450	449
						_		2	1	1695	1613	-6-14	431	480	-3 -1	1575	1491	1 5	442	1106		10	037	000
	L =-	-10			L =	-7						-6-12	552	614	-2-17	569	579	16	1033	1151		11	1108	1084
н	ĸ	FO	FC	н	ĸ	FØ	FC					-6-11	520	577	-2-15	597	578	1 7	2072	2352	- 4	12	600	603
7	0	724	709	5	0	342	290					-6 -9	751	807	-2-14	307	322	1 8	1648	2016	- 4	13	922	895

4 15 739 712	9 3 336 322	-9 -6 440 471	-5 -1 2149 2048	-1 -9 1156 1266	1 16 335 276	5 9 1027 996	
4 18 382 244	9 6 280 271	-9-5 677 702	-4 0 671 704	-1 -8 1743 1851	1 17 799 670	5 10 405 441	
A 19 A74 301	9 7 A38 AA3	-9 -4 512 522	-4-18 340 357	-1 -7 1787 1838	1 19 543 459	5 11 578 613	
		-9 -3 643 417	-4-17 473 454	-1 -4 1075 1000		5 17 373 379	
3 0 1807 1460	105 516 7 7	-7-3 382 817		-1 -6 1723 1888		J 17 373 277	
2 5 442 421	9 10 293 233	-9-2 626 610	-4-13 322 464	-1 -3 864 772	2 1 2602 2386	6 U 1286 1302	
5 3 1401 1327	9 11 274 182	-8-14 368 405	-4-14 512 505	-1 -4 848 873	2 2 679 675	6 1 1126 1126	
5 4 965 941	9 13 297 204	-8-12 303 320	-4-13 1051 1082	-1 -3 1261 1413	2 3 1357 1361	6 2 1076 1052	
5 5 1366 1303	9 15 346 360	-8-11 308 344	-4-12 625 691	-1 -2 2057 2137	2 4 853 774	6 3 626 595	
5 6 1032 925	10 1 446 441	-8-10 309 273	-4-11 1202 1265	-1 -1 1995 1945	2 5 1764 1808	6 4 570 563	
5 7 621 642	10 2 343 335	-8 -9 380 351	-4-10 510 520	0 0 2651 2478	2 6 657 747	6 5 535 482	
5 8 814 770	10 4 340 375	-8 -7 276 352	-4 -9 1342 1395	0 1 289 272	2 7 1189 1271	6 6 872 863	
5 9 261 290	10 6 459 430	-8 -6 821 832	-4 -8 471 469	0 2 2971 3080	2 8 743 820	A 7 955 960	
5 10 974 990	10 0 707 700	-0 -5 577 554	-4 -7 1832 1733	0 2 292 291	2 9 919 944	A 9 1142 1140	
5 10 878 870			-4 -/ 1032 1/33			4 0 740 741	
5 11 630 622	10 12 326 357	-8 -4 469 363	-4 -6 1327 1367	0 4 1106 1233	2 10 35/ 3/9	6 7 /66 /61	
5 12 763 797	10 14 314 269	-8 -2 647 641	-4 -5 2530 2654	0 5 238 235	2 11 /54 /44	6 10 625 557	
5 13 434 433	11 1 562 527	-8 -1 950 936	-4 -4 1556 1551	0 6 2161 2191	2 13 711 706	6 11 625 620	
5 15 441 425	11 2 336 327	-7 0 249 272	-4 -3 1994 1972	0 7 353 402	2 15 493 465	6 13 290 226	
5 16 487 515	11 3 637 615	-7-16 375 380	-4 -2 1412 1275	0 8 2514 2689	2 16 331 334	6 13 419 366	
5 18 484 431	11 5 640 593	-7-14 349 358	-4 -1 2810 2633	0 9 490 489	2 18 369 310	6 16 428 363	
5 19 372 295	11 7 417 381	-7-13 335 381	-3 0 1510 1321	0 10 1822 1836	3 0 820 823	6 17 408 401	
6 0 1577 1472	11 9 323 382	-7-11 272 198	-3-15 363 454	0 11 528 443	3 1 240 258	6 18 340 293	
6 1 1257 1188	11 11 420 389	-7-10 355 429	-3-14 601 585	0 12 751 664	3 2 1199 1094	7 0 1830 1778	
6 2 693 690	12 0 350 389	-7 -8 293 314	-3-13 304 397	0 13 562 509	3 3 475 472	7 1 595 606	
4 3 870 816		-7 -4 720 744	-3-13 447 744	0 14 410 549	3 A 1746 1724	7 2 1447 1403	
8 3 777 715			-3-12 00/ /44	0 14 817 548	3 4 1/45 1/38	7 2 1487 1403	
8 4 /03 846	12 3 334 312	-/ -4 037 001	-3-11 32/ 373	0 15 437 417	3 5 798 751		
6 7 467 387	12 4 323 368	-7 -2 693 685	-3-10 731 740	0 16 1122 966	3 6 1315 12//	/ 3 676 /14	
6 6 252 216	12 5 327 331	-7 -1 392 346	-3 -9 1334 1330	0 18 872 736	3 8 391 390	7 6 816 834	
6 7 669 645	12 8 514 455	-6 0 1781 1701	-3 -7 1063 1100	0 19 386 344	3 10 722 692	7 7 447 417	
6 9 836 837		-6-17 396 306	-3 -6 1270 1369	0 20 405 287	3 11 263 181	7 8 1231 1221	
6 11 589 613	L = 1	-6-14 501 562	-3 -5 470 538	0-20 299 281	3 12 651 631	7 9 308 231	
6 12 659 655	H K FO FC	-6-12 692 724	-3 -4 1944 1917	0-18 719 721	3 14 619 570	7 10 965 970	
6 14 546 468	-13 -4 312 260	-6-11 467 551	-3 -3 833 852	0-16 839 980	3 15 350 372	7 11 307 239	
6 17 448 440	-13 -1 297 302	-6-10 885 939	-3 -2 620 613	0~15 352 454	3 16 403 379	7 14 449 358	
7 0 1234 1170	-12 0 525 552	-6 -9 807 854	-7 -1 1755 1249	0-14 595 606	3 20 349 314	7 16 606 574	
7 1 313 305	-12-11 240 359	-4 -9 527 514	-2 0 218 249	0-13 497 477	4 0 539 530	7 18 384 355	
7 2 1078 1044		-6 -6 527 518	-2-17 883 834	0-13 810 505	4 1 1037 1015	0 0 399 394	
7 2 1075 1088					4 2 982 910	9 1 1099 1047	
7 3 575 537	-12 -8 271 266	-0 -0 1240 1230	-2-13 328 321		4 2 752 710	0 7 476 7043	
/ 6 67/ 673	-12 -3 266 286	-6 -5 338 370	-2-13 517 472	0-10 1522 1/81	4 3 1010 480		
7 7 301 217	-12 -2 314 33/	-6 -4 1568 1601	-2-12 366 323	0 -9 3/1 465	4 4 1245 1225	8 3 370 387	
7 8 1165 1187	-11-13 296 276	-6 -3 284 358	-2-11 1010 1126	0 -8 2437 2732	4 5 753 742	8 5 419 429	
7 9 309 260	-11-12 364 359	-6 -2 1040 1040	-2-10 693 630	0 -7 299 361	4 6 808 786	8 6 272 192	
7 10 792 756	-11 -9 274 308	-6 -1 413 390	-2 -9 1354 1418	0 -6 2089 2167	4 7 247 202	8 7 848 850	
7 11 292 274	-11 -8 291 184	-5 0 1399 1316	-2 -7 1080 1163	0 -5 267 238	4 8 567 545	8 8 479 486	
7 14 361 344	-11 -4 395 439	-5-18 492 487	-2 -6 424 427	0 -4 1195 1166	4 9 236 248	8 9 761 728	
7 16 394 447	-11 -3 634 667	-5-16 652 700	-2 -5 1353 1345	1 0 1556 1450	4 10 497 571	8 10 366 391	
8 0 443 394	-11 -2 293 319	-5-15 674 613	-2 -4 592 641	1 1 2659 2624	4 11 420 428	8 11 313 325	
8 1 930 877	-11 -1 301 289	-5-14 447 395	-2 -3 2219 2047	1 2 1058 1000	4 12 548 555	8 13 362 353	
8 7 305 247	-10-14 349 393	-5-13 1093 1119	-2 -2 407 295	1 3 2149 2034	4 13 494 538	8 15 312 267	
8 3 640 609	-10-13 200 255	-5-13 570 534		1 4 279 209	A 14 353 399	9 0 337 269	
0 4 440 497	-10-13 300 333	_6_11 1144 1014	-1-22 200 124	1 8 1130 1044	A 15 200 272	9 1 572 545	
	-10 -/ 200 283	-3-11 1140 1211	-1-22 307 134	1 3 1127 1000		0 7 740 775	
0 6 413 386	-10 -6 327 349	-5-10 920 975	-1-14 344 205	1 6 423 399	- 10 37/ 403	7 3 370 363	
8 7 811 628	-10 -5 414 455	-0 -7 555 649	-1-18 610 532	1 7 825 844	- 18 316 239	7 4 344 344	
8 8 304 260	-10 -4 407 474	-5 -8 1412 1429	-1-17 526 460	1 8 536 576	5 0 818 718	A 3 399 385	
8 9 639 592	-10 -3 384 414	-5 -7 1164 1207	-1-16 737 751	1 9 1451 1536	5 1 1041 1010	9 7 378 389	
8 15 393 355	-9 0 574 565	-5 -6 933 940	-1-15 450 512	1 10 409 438	5 3 286 297	9 10 287 249	
8 16 292 321	-9-13 440 430	-5 -5 1882 1954	-1-13 491 454	1 11 1138 1191	5 4 689 592	9 13 275 244	
8 17 377 318	-9-11 378 445	-5 -4 831 856	-1-12 548 522	1 12 399 374	5 6 272 271	10 1 441 479	
9 0 317 314	-9 -8 509 558	-5 -3 2302 2322	-1-11 1030 953	1 14 326 355	5 7 861 815	10 2 472 451	
9 1 542 521	-9 -7 523 549	-5 -2 1964 1961	-1-10 1777 1718	1 15 902 830	5 8 287 261	10 3 509 497	

10 4 601 618	-8 -8 422 477	-4-13 731 738	-1 -3 1444 1277	2 4 407 349	5 17 582 568	-14 -2 452 401
10 6 378 440	· -8 -7 375 436	-4-12 967 1005	-1 -2 1448 1338	2 5 2082 2050	6 0 1790 1816	-13 -9 285 371
10 7 385 379	-8 -6 868 870	-4-11 875 872	-1 -1 2121 1925	2 6 908 899	6 1 1135 1119	-13 -7 281 241
10 9 359 345	-8 -4 1047 1079	-4-10 373 416	0 0 1124 970	2 7 1307 1327	6 2 1543 1507	-13 -1 486 454
10 12 305 360	-8 -2 885 905	-4 -9 731 759	0 1 418 425	2 8 644 610	6 3 576 613	-12 -4 298 297
11 0 275 347	-7 0 544 533	-4 -8 308 277	0 2 1537 1402	2 9 474 463	6 4 739 703	-12 -3 274 279
11 1 551 551	-7-14 383 379	-4 -7 1332 1376	0 3 562 535	2 10 953 929	A 5 482 439	-12 -1 282 259
11 2 505 540	-7-13 743 738	-4 -4 598 545	0 A BIA 779	2 11 1003 1011	A A 1090 1048	-11-14 402 433
11 3 383 347						-11-17 708 700
11 5 803 548	-7-10 524 535	-4 -5 1180 1180	0 5 400 372			-11-11 200 108
11 / 383 348	-/ -/ 301 203	-4 -4 1514 1520	0 8 1240 1284	2 14 508 528	8 8 1534 1474	
11 10 282 300	-/ -/ 555 554	-4 -3 2004 1914	0 7 1039 1153	2 15 812 753	6 9 1008 987	
11 11 446 433	-7 -6 383 398	-4 -2 1146 980	0 8 1382 1449	2 16 4/5 402	6 10 911 901	-11 -4 2// 253
12 0 436 442	-7 -4 1310 1343	-4 -1 1619 1543	0 9 396 450	2 18 368 325	6 11 460 450	-11 -/ 335 352
	-7 -3 326 308	-3 0 3134 2690	0 10 1188 1187	2 19 310 245	6 12 282 288	-11 -6 373 364
L = 2	-7 -2 1007 1017	-3-22 336 215	0 11 848 865	2 21 447 353	6 14 444 375	-11 -5 313 331
H K FO FC	-7 -1 413 369	-3-19 298 215	0 12 451 434	3 1 1144 1122	6 16 473 422	-11 -4 528 559
-13 -9 359 314	-6 0 1780 1655	-3-17 368 370	0 13 526 491	3 2 816 775	6 18 375 322	-11 -3 532 535
-13 -7 367 328	-6-19 417 319	-3-15 677 740	0 15 419 348	3 3 1619 1628	7 0 1789 1781	-11 -2 529 574
-13 -1 305 325	-6-17 333 280	-3-14 436 501	0 16 529 414	3 4 1746 1861	7 1 500 491	-11 -1 349 356
-12 0 376 337	-6-16 341 301	-3-13 370 400	0 17 481 459	3 5 1174 1146	7 2 985 978	-10-15 320 327
-12-12 307 144	-6-14 473 424	-3-12 613 714	0 18 496 407	3 6 1310 1264	7 3 262 298	-10-13 631 671
-12 -6 267 130	-6-13 467 494	-3-10 871 916	0 24 320 139	3 7 1142 1169	7 4 798 772	-10-11 604 587
-12 -2 260 222	-6-12 1033 1067	-3 -9 412 527	0-18 463 372	3 8 382 324	7 5 283 300	-10 -9 321 324
-11-12 359 360	-6-11 511 492	-3 -8 641 634	0-17 477 430	3 9 500 478	7 6 934 920	-10 -8 352 371
-11 -6 382 457	-6-10 805 846	-3 -7 1047 1082	0-16 433 375	3 10 663 666	7 7 471 473	-10 -7 763 828
-11 -4 409 510	-6-10 000 040	-3 -4 1394 1502	0-15 344 394	3 11 789 777	7 8 1039 1033	-10 -6 409 433
-11 -7 700 010		-3 -6 1374 130E		2 12 952 844	7 9 397 374	-10 -5 1084 1111
		-3 -3 762 744		3 12 603 606	7 10 707 704	
-10 0 2/7 324		-3 -4 1436 1408		3 13 466 467	7 10 /2/ /24	-10 -3 1211 1227
-10-15 407 341	-6 -6 1516 1478	-3 -3 832 826	0-11 689 782	3 14 416 373	/ 12 404 400	
-10-13 629 610	-0 -3 604 628	-3 -2 1860 1771	0-10 9/1 1140	3 13 466 514	7 16 331 328	-7 0 740 1012
-10-12 270 329	-6 -4 1873 1736	-3 -1 21/5 1902	0 -9 415 416	3 17 342 328	/ 18 423 354	-7-16 417 373
-10-11 549 562	-6 -3 505 531	-2-21 306 292	0 -8 1289 1427	4 0 225 248	8 1 892 843	-4-12 358 528
-10 -9 508 456	-6 -2 1739 1671	-2-17 422 430	0 -7 1125 1182	4 1 1039 1067	B 2 557 520	-9-14 418 457
-10 -7 522 565	-6 -1 886 916	-2-15 483 591	0 -6 1197 1246	4 2 1008 1024	8 5 239 228	-9-13 450 466
-10 -5 982 1021	-5 0 1772 1707	-2-13 448 528	0 -5 395 422	4 3 546 542	8 6 368 443	-9-12 526 529
-10 -4 283 342	-5-21 417 347	-2-12 303 245	0 -4 794 742	4 4 1270 1231	8 7 483 453	-9-11 356 371
-10 -3 798 793	-5-19 405 373	-2-11 511 602	1 0 755 749	4 5 529 561	8 8 315 293	-9-10 657 634
-10 -2 364 367	-5-18 392 267	-2 -9 1146 1216	1 1 625 595	4 6 641 602	8 9 540 526	-9 -8 448 484
-10 -1 606 631	-5-16 411 454	-2 -8 633 620	1 2 1537 1504	4 7 966 943	8 15 350 342	-9 -7 350 319
-9 0 1091 1073	-5-15 622 613	-2 -7 1651 1887	1 3 881 878	4 8 324 296	9 0 326 331	-9 -6 1018 1125
-9-16 374 341	-5-13 1006 1028	-2 -6 639 661	1 4 2194 2106	4 9 731 687	9 1 321 278	-9 -5 575 584
-9-14 466 442	-5-12 467 449	-2 -5 891 927	1 5 974 912	4 10 463 440	9 4 427 418	-9 -4 967 986
-7-13 525 522	-5-11 1215 1269	-2 -4 430 432	1 6 1211 1171	4 12 440 490	9 5 336 322	-9 -3 784 800
-9-12 333 390	-5-10 1185 1221	-2 -3 915 989	1 7 851 953	4 14 508 481	9 6 303 309	-9 -2 821 856
-9-11 491 490	-5 -9 755 787	-2 -2 730 758	1 8 807 853	A 15 330 348	9 7 305 354	-9 -1 285 347
-9-10 402 426	-5 -8 1232 1308	-1 0 3191 2752	1 9 1015 1062	4 16 495 480	9 9 277 322	-8-14 390 468
-9 -8 722 778	-5 -7 1106 1183	-1-24 338 135	1 10 1047 986	4 18 330 353	9 12 352 228	-8-12 438 421
-9 -7 315 399	-3 -4 932 945	-1-14 595 454	1 11 693 709	5 0 739 785	9 13 295 235	-8-10 493 499
-9 -4 471 479	-5 -5 2047 2297	-1-16 450 291	1 12 492 704	5 1 1920 1757	10 1 272 307	-8 -9 433 499
	-5 -4 035 043		1 14 431 433	8 2 214 170	10 2 415 444	-8 -7 452 491
	-3 -7 033 043	-1-12 240 280	1 19 260 212	4 3 744 740	10 4 433 410	-8 -6 589 627
-7 -7 703 1008		-1-11 404 54	1 14 400 514	8 4 415 485	10 6 337 383	-8 -4 827 845
-9 -9 7007 1139		-1-11 474 341	1 10 904 311	J 7 017 0J7		-8 -2 701 705
-7 -2 /82 834	-5 -1 1532 1559		1 10 240 242	J J 004 014	11 3 434 473	-8 -1 344 397
-7 -1 320 313		-1 -9 8/9 1029	1 17 336 246	5 6 510 488	11 3 930 973	-7 A 295 198
-6 0 350 308		-1 -8 811 453	1 20 467 344	J / 732 734	11 / JUJ 208	-7-19 343 373
-8-14 336 372	-4-20 358 366	-1 -7 649 688	2 0 1222 1255	5 Y 1212 1182		-7-14 303 673 -7-14 317 367
-8-12 625 644	-4-17 346 342	-1 -6 854 932	2 1 1188 1158	5 11 727 711		-7-17 J1/ KO/ -7-17 LAD LOA
-8-10 320 319	-4-15 362 354	-1 -5 967 955	2 2 999 974	5 14 311 284	H K FU FC	-7-14 040 00V
-8 -9 330 363	-4-14 737 789	-1 -4 456 414	2 3 2583 2461	J 13 616 347	-14 0 429 412	-/-11 404 418

	-7-10 607	628 -	3-15 656	672	0 20	453	310	з	9	939	913	87	262	260	-9 -4	607	661	-5 -2	1085	1071
	-7 -9 683	683 ~	3-14 380	404	0 22	336	188	3	10	368	365	8 11	269	127	-9 -2	907	959	-5 -1	995	1035
	-7 -8 531	529 -	-3-13 1107	1166	0~20	429	305	З	11	492	427	8 14	300	282	-9 -1	509	510	-4-22	421	289
	-7 -7 279	221 -	-3-12 310	314	0-17	330	519	3	12	720	736	8 15	310	296	~8 Q	830	800	-4-20	445	386
	-7 -6 979 1	071 -	3-11 979	1017	0-15	403	521	3	13	391	345	91	303	248	-8-17	334	280	-4-16	314	287
	-7 -5 384	407 -	3-10 404	399	0-14	760	937	Э	14	559	516	92	292	366	-8-16	339	375	-4-15	687	58?
	-7 -4 1253 1	243 -	-3 -9 641	594	0-12	937	1060	3	15	479	452	93	364	400	-8-15	412	301	-4-14	977	976
	-7 -3 617	578 -	3 -8 390	332	0-11	470	483	3	17	364	329	75	576	600	-8-12	369	332	-4-13	664	675
	-7 -2 706	752 -	3 -7 848	936	0-10	758	845	- 4	0	603	573	97	257	242	-8-11	372	387	-4-12	870	874
	-7 -1 788	827 -	3 -6 443	596	0 -9	621	670	- 4	1	1046	1035	10 0	261	175	-8-10	596	608	-4-11	728	828
	-6 0 660	628 -	3 -5 1404	1442	0 ~8	498	551	- 4	2	506	513	10 2	275	360	-8 -9	370	360	-4-10	737	745
	-6-21 348	223 -	3 -4 671	660	0 -7	398	391	- 4	3	750	740	10 4	439	486	-8 -8	480	462	-4 -9	1085	1117
	-6-20 417	214 -	3 -3 2536	2567	0 -6	744	734	4	4	486	506	10 6	380	389	-8 -7	505	498	-4 -7	911 1	1012
	-6-14 572	545 -	3 -2 1246	1130	0 -5	564	597	4	5	332	320	11 0	268	187	-8 -6	232	229	-4 -6	1340	1484
	-6-13 576	552 -	2-20 329	263	0 -4	2198	2129	4	6	454	448				-8 -5	606	629	-4 -5	1416	1501
	-6-12 559	483 -	2-19 347	323	1 0	2320	2228	4	7	1063	1048	. L.*	· 4		-8 -4	233	205	-4 -4	1605	1661
	-6-11 665	681 ~	2-15 329	410	1 1	466	496	4	8	478	462	нк	FO	FC	-8 -2	810	830	-4 -3	1560	1641
	-6-10 609	604 -	2-14 635	613	1 2	2539	2368			770	/18	-14 0	504	463	-8 -1	635	048	-3-23	340	200
	-6 -9 341	407 -	2-13 454	402	1 3	14//	1515		10	610	621	-14 -/	347	308	-/ 0	302	207	-3-21	510	370
	-6 -8 855	896 -	2-12 415	400	1 4	2201	2162	1	11	267	232	-13 -7	345	362	-/-18	3//	387	-3-20	311	110
	-6 -/ 259	235 -	2-11 622	684	1 5	1936	1934	- 1	12	3//	427	-13 -1	3/1	400	-/-16	417	334	-3-17	421	427
	-0 -0 008	64U -	2-10 /69	820	1 0	2384	2341	2	1	1647	10/2	-12-12	32/	283	-7-13	273	200	-3-14	430	941
	-0 -0 440	- 400	2 - 7 024	040	1 /	930	8/0	3	4	447	202	-12 -/	208	310	-7-12	314	207	-3-18	5//	400
		2// -	2-8 833	72/	1 8	1480	1409	5	2	729	740	-12 -4	344	333	-7-11	343	403	-3-13	1401	407
	-6 -3 1032	9/4 -	2 -/ 830	1004	1 9	810	/63	5	2	3/4	3/4	-12 -2	2/0	2/0	-7-10	207	427	-3-13	1107 4	1202
	-6 -2 1590 1	533 -	2 -0 999	1084	1 10	1045	1067	5	•	401	1224	-11-15	300	202	-7 -9	471	42/	-3-11	846	710
	-6 -1 984	713 - R(0 -	2 -3 1133	1740	1 11	1000	1205		~	1332	1329	-11-14	320	224	-7 -8	741	724	-3-10	400	744
	-5 0 994	760 -	2 -4 1/60	1/47	1 12	1229	1203	5		2//	200 005	-11-13	471	422	-7 -7	101	123	-3 -7	1172 1	1211
	-3-14 446	367 -	2 -3 493	1002	1 13	336	7/1	5		600	440	-11-12	704	7 3€	-7 -8	314	200	-3 -8	1740	1931
		704 -	2 -2 1701	818	1 14	701	700			201	240	-11-11	202	104	-7 -4	202	220	-3 -4	774	847
	-5-19 007	1470 - 1979 -	1 0 3910	2284	1 10	490	349	Ĩ	17	435	419	-11 -7	314	347	-7 -3	378	379	-3 -5	2590 :	932
	-9-12 333	220 -	1-14 324	322	1 22	594	404	ž	٠ <u>̈́</u>	1688	1713	-11 -6	405	431	-7 -2	761	743	-3 -4	502	591
	-5-11 1008 1	058 ~	1-12 924	614	2 0	751	751	Ă	ĭ	859	843	-11 -5	616	629	-7 -1	834	816	-3 -3	1955 2	2176
	-5 -9 471	470 -	1-10 997	1029	2 1	1004	1930	~	-	1194	1195	-11 -4	649	647	-6-11	510	530	-3 -2	1813	654
	-5 -8 547	A05 -	1 -9 302	331		1136	1115	~	3	319	331	-11 -3	308	286	-6-10	452	467	-2 0	2184	935
	-5 -7 759	805 -	1 -8 863	901	2 3	2713	2640		4	425	443	-11 -2	513	506	-6 -9	997	1062	-2-14	760	835
	-5 -6 916	954 -	1 -7 909	963	24	337	306	Ā		243	241	-11 -1	420	448	-6 -8	391	356	-2-13	628	707
	-5 -5 1706 1	621 -	1 -6 1675	1770	2 5	2704	2678	6	6	939	945	-10 0	545	521	-6 -7	984	995	-2-12	905 1	1030
	-5 -4 316	307 -	1 -5 760	749	2 6	946	937	-	7	840	806	-10-13	529	529	-6 -5	557	550	-2-11	475	572
	-5 -3 1433 1	378 -	1 -4 1775	1663	2 7	1606	1621	6	8	805	797	-10-11	501	452	-6 -4	457	467	-2-10	762	650
	-5 -2 883	927 -	1 -2 2313	2062	2 8	1086	1032	6	9	453	499	-10 -9	437	410	-6 -3	581	581	-2 -9	264	323
	-5 -1 798	760 -	1 -1 1477	1295	2 9	1076	1069	6	10	855	826	-10 -8	398	424	-9 -5	264	263	-2 -8	1223 1	1321
	-4 0 482	462	0 0 764	652	2 10	668	645	6	11	255	182	-10 -7	276	325	-6 -1	1074	1110	-2 -7	318	323
	-4-22 437	338 .	0 1 1619	1493	2 11	1262	1270	6	14	354	349	-10 -6	325	416	-5 0	349	339	-2 -6	1670 1	1672
	-4-20 417	331 (0 2 2450	2288	2 13	1267	1204	6	16	609	527	-10 -5	966	992	-5-22	342	189	-2 -5	1075 1	1088
	-4-16 525	489	0 3 263	114	2 15	1092	1003	6	18	320	335	-10 -3	1047	1077	-5-16	320	291	-2 -4	1731	1673
	-4-14 618	609	0 4 2017	1994	2 18	363	212	7	0	729	767	-10 -2	422	501	-5-15	446	475	-2 -3	1646 1	1561
	-4-12 1042 1	058	0 5 586	582	2 19	333	285	7	2	583	592	-10 -1	422	458	-5-14	574	625	-2 -2	2176 1	1865
	-4-10 673	780 4	0 6 739	729	2 21	339	311	7	з	403	395	-9 0	346	341	-5-13	586	751	-2 -1	638	586
	-4 -9 529	525	0 7 364	317	30	571	585	7	6	450	513	-9-14	391	376	-5-12	697	765	-1 0	1044 1	1050
	-4 -8 520	571	0 8 603	600	31	1388	1338	7	7	344	367	-9-12	355	366	-5-11	434	457	-1-13	364	310
	-4 -7 288	327	0 9 697	701	32	1365	1267	7	8	710	714	-9-11	269	281	-5 -9	336	246	-1-12	749	012
	-4 -6 1404 1	466	0 10 927	866	33	1229	1211	7	9	481	443	-9-10	271	318	-5 -8	457	458	-1-10	387	387
	-4 -4 1630 1	639	0 11 554	569	34	971	1003	7	10	488	494	-9 -9	690	720	-5 -7	338	474	-1 -7	00/	000
•	-4 -3 477	490	0 12 1223	1060	35	1491	1479	7	14	333	276	-7 -8	471	533	-3 -6	1135	1114	-1 -6	1103 1	205
	-4 -2 1108 1	081	0 14 1026	875	36	574	541	8	1	348	333	-9 -7	588	658	-5 -5	838	922	-1 -5	1017	.303
	-4 -1 399	411	0 15 617	546	37	649	653	8	3	371	427	-9 -6	378	632	-3 -4	1200	1407	-1 -7	271/ 2	3010
	-3-21 411	336	0 17 545	497	38	321	266	8	5	467	435	-9 -5	293	326	-5 -3	704	410	-1 -3	3/£	370

-1 -2 1	418 1274 2	2 9	322	333	72	339	333	-9-17	528 452	~5 -9	633	680	-1 -6	403	440	2 13	383	411
-1 -1	209 110	2 10	383	333	74	360	390	-9-15	487 469	-5 -8	471	427	-1 -5	236	315	2 14	595	566
	502 1201 4	5 11	1105	1144	7 4	405	547	-9-11	205 202	-5 -7	414	100	-1 -4	1220	1194	3 0	502	400
0 0 1		E 11	1000	107	~ .	475	342		373 373	-5-7	041 1	077	-1 -4	310	1100	3 0	JUE	
0 1 1	104 982 4	2 13	1084 1	10/1	8 1	271	208	-9 -9		-5 -6	741 1	034	-1 -3	312	333	3 1	033	6/3
0 2 1	478 1384 - 2	2 14	301	314	8 5	478	502	-9 -7	842 867	-5 -5	482	447	-1 -2	1514	1410	32	475	203
03	563 547 2	2 15	402	350	8 3	629	677	-9 -6	256 189	-5 -4	1282 1	375	-1 -1	225	117	33	544	544
042	2507 2408 2	2 16	405	389	8 5	569	536	-9 -5	388 381	-5 -3	885	702	00	709	637	34	635	638
0 6 1	670 1639	2 19	329	253	86	402	389	-9 -4	450 483	-4-15	658	713	0 1	775	936	3 5	937	921
07	734 734	2 20	383	236	87	377	363	-9 -3	480 481	-4-14	737	698	02	1085	1001	36	740	733
0 8	518 479	2 21	457	371	8 8	386	347	-9 -1	1097 1081	-4-13	844	891	0 3	643	617	3 7	412	382
00	022 005 1		444		0 11	440	433		1441 1447	-4-17	507	474		1500	1407		812	539
0 7	933 665 .	3 0	333	555	0 11	400	433	-0 0	1001 1002	-4-12	377	047		1308	140/	30	314	320
0 10	829 777 3	3 1	305	499	8 13	407	295	-8-18	428 363	-4-11	1130 1	223	0 5	577	428	3 9	451	441
0 11	522 516 3	32	724	684	91	350	376	-8-16	454 419	-4-10	336	414	06	1063	1054	3 10	481	491
0 12 1	.063 958 3	з з	283	296	93	666	675	-8-14	499 529	-4 -9	1111 1	204	07	807	789	3 11	448	441
0 14	891 822 3	3 4	1208 1	1186	94	294	361	-8-13	286 265	-4 -8	383	410	09	821	778	3 12	549	559
0 15	431 348 3	3 5	238	277	95	394	502	-8-11	276 272	-4 -7	1465 1	667	0 10	404	386	3 13	343	382
0 16	500 407 :	Ā	1134 1	1091	97	277	339	-8-10	873 877	-4 -6	1167 1	333	0 11	545	442	3 15	307	263
0 17	221 222 2		649	409		274	217		829 802	-4 -5	1606 1	845	0 12	708	652	Ā 0	1215	1226
0.70	440 224 7	Ś	420	440	10 1	242	222	-0 -0	1004 1011		1184 1		0.12	220	224		004	007
	900 320 3		433	400	10 1	203	233	-0 -0	1234 1311		1134 1	234	0 13	320	327		004	076
0-16	309 382 1	3 10	442	413	10 4	340	328	-8 -7	396 444	-4 -3	5184 5	330	0 15	374	323	4 3	820	8/2
0-15	335 386 3	3 11	291	285	10 6	274	266	-8 -6	970 1001	-30	1649 1	453	0 17	509	383	44	267	261
0-14	647 753 3	3 12	535	569				-8 -5	427 402	-3-21	313	329	0 20	318	223	4 5	787	800
0-12	838 963 3	3 13	403	388	L =	5		-8 -4	300 323	-3-19	375	432	0-17	310	401	46	896	693
0-11	436 498 3	3 14	628	614	н к	FO	FC	-8 -3	602 681	-3-18	363	365	0-15	285	276	4 7	349	364
0-10	732 827 3	1 15	278	259	-14 -8	322	314	-8 -2	1308 1334	-3-16	426	474	0-14	286	260	4 8	631	670
0 -0	704 017 4	3 1 4	202	282	-14 -5	340	751	_0 _1	842 841	-3-15	441	700	0-17	200	214	A 10	413	423
0 - 7	/74 OE/ 0	3 10	372	JJE	-14 -5	200	231	-0 -1	J45 J01	-3-15	001		0-13	201	310		010	641
0-8	423 451 0	3 20	346	276	-14 -1	348	387	-7 0	1802 1750	-3-14	673	/ 76	0-12	254	/00	4 11	438	441
0 -7	639 749 4	4 0	867	874	-13 -9	292	231	-7-18	371 302	-3-13	890 1	007	0-11	428	444	4 12	424	401
0 -6 1	600 1622 4	l 1	784	803	-13 -8	296	229	-7-17	378 223	-3-11	953 1	063	0-10	446	465	4 13	475	485
0 -5	272 143 4	1 2	532	558	-13 -7	258	261	-7-16	405 400	-3-10	909 1	088	0 -9	715	762	4 15	386	323
0 -4 2	421 2389 4	4	512	514	-13 -2	256	284	-7-14	370 302	-3 -9	700	778	0 -7	727	804	4 18	314	263
1 0 2	556 2482	i A	338	351	-12-14	300	171	-7-12	334 290	-3 -8	1193 1	289	0 -6	998	1080	4 19	329	259
	040 1000 4		448	442	-12 -4	373	212	-7-10	074 003	-3 -7	1150 1	242	0 - 4	544	622		370	397
			005	046	-12 -5	3/2	313	-/-10	074 002	-3 -/	1150 1	843	0 -5		1 1 1 1		400	470
1 2 1	/31 1666		371	342	-12 -2	202	302	-/ -4	6/1 /23	-3 -6	1244 1	2/4	0 -4	1044	1534	5 1		0/0
1 3 1	547 1557 4	10	462	440	-11-13	305	266	-7 -8	845 900	-3 -5	2332 5	465	1 0	297	321	2 5	454	433
1 4 1	647 1633 4	4 11	326	318	-11-12	323	300	-7 -7	729 767	-3 -4	779	739	12	1149	1115	5 3	383	376
1 5 1	677 1690 4	13	477	450	-11-11	304	238	-7 -6	878 869	-3 -3	2403 2	369	1 3	1128	1058	54	706	706
1 6 1	825 1770 4	15	374	254	-11-10	300	281	-7 -5	246 253	-3 -2	1747 1	617	1 4	974	982	5 5	310	250
17	382 434 5	5 1	956	991	-11 -6	404	365	-7 -4	496 534	-3 -1	1553 1	438	1 5	1193	1128	56	278	270
1 8 1	286 1203	2	376	381	-11 -4	379	349	-7 -3	508 530	-2 0	1107 1	023	1 6	819	795	57	428	476
1 10	000 901		447	444	-11 -7	270	244	-7 -3	1093 1045	-2-10	390	274	1 7	713	711	5 8	380	352
1 11	004 000 1		707	200	-11 -0		247	-/ -	1000 1000	-2-14	343			713	407		500	407
			2/0	207	-11 -2	338	34/	-/ -1	1047 1042	-2-14	343		1.0	/13			222	330
1 12	890 830 3	2 2	345	304	-11 -1	26/	243	-6 0	580 505	-2-13	318	343	1 10	381	200	5 10	332	4//
1, 13	701 777	> 7	754	/42	-10 0	661	698	-6-17	440 316	-2-12	834	735	1 11	471	433	2 12	400	700
1 14	831 759 5	3 9	802	792	-10-16	307	270	-6-15	409 442	-2-11	349	433	1 12	263	333	61	351	308
1 15	405 337 5	5 10	332	310	-10-14	330	271	-6-14	574 524	-2-10	957 1	046	1 13	672	729	62	271	304
1 16	461 423 5	5 11	405	421	-10-13	293	224	-6 -9	622 628	-2 -9	768	851	1 14	680	659	64	374	396
1 18	388 330 .	5 15	328	258	-10-11	515	482	-6 -7	748 870	-2 -8	368	404	1 15	533	607	66	440	424
1 20	312 262		415	389	-10-10	293	330	-6 -5	526 572	-2 -7	812	852	2 0	818	815	6 10	353	302
1 21	336 284 4		573	413	-10 -9	270	204	-6 -4	552 424	-2 -4	1125 4	226	5.	310	337	A 12	289	308
1 41	330 EJ4 C		100	013	-10 -7	2/7	807	-0-4	1000 JEI	-2-0	1123 1		5 5	704	707	7 0	244	202
2 U 1	000 882 6		600	34/	-10 -8	308	332	-6 -3	6/0 628	-2 -5	8/3	703	- <u>-</u> - 2	/04	17/	, v	404	881
2 1 1	277 1196 6	5 3	295	341	-10 -7	366	315	-6 -2	315 305	-2 -4	10/3 1	473	23	082	0/4	_ <u>/ 2</u>		331
22	739 660 8	54	282	285	-10 -6	308	354	-6 -1	1195 1151	-2 -3	928	856	24	640	633	74	758	149
2 3 2	109 2122 6	56	410	408	-10 -5	418	404	-5-22	394 275	-2 -2	1194 1	057	25	758	714	76	466	483
24	259 216 6	5 8	530	537	-10 ~4	350	288	-5-17	322 280	-2 -1	385	373	26	395	412	78	334	367
2 5 1	882 1801	5 7	296	320	-10 -3	773	831	-5-16	333 283	-1 0	1390 1	407	2 7	236	190	7 12	319	344
2 4	468 440	5 10	397	394	-10 -2	389	416	-5-14	484 534	-1-14	400	132	2 9	381	441	7 14	448	416
2 7 4	253 1225 4	L 1.L	200	211	-10 -1	433	454	-5-12	743 750	-1-13	760	840	2 11	414	339	8 0	537	544
E / 1			£70	311	-10 -1	-33		-5-12		-1-12	441	720		402	554	<u> </u>	362	311
< 8	aoj 811 7	r 1	267	3//	y U	558	512	-3-10	470 336	-1-10	041	/30	≤ 15	002	330	9 1	302	311

-	~ ~ ~	e 040			-2 -0	744	000		2	400	ALL		274	205	-0-15	245	221	-7 -0	014 004
8	2 34	5 342	-8-14	348 371	-3 -6	/40	808		3	477	400	5 8	3/0	385	-7-15	343	201	-3-7	714 774
8	3 43	3 517	-8-12	488 459	-3 -7	407	444	1	4	328	333	2 /	242	208	-9-13	334	367	-3 -8	404 340
8	4 50	6 572	-8-10 1	015 1031	-3 -6	801	624	1	5	682	666	5 10	407	413	-9-10	499	535	-3 -7	845 829
8	5 53	9 609	-8 -8 1	486 1526	-3 -5	694	717	1	6	414	398	5 12	366	287	-9 -9	761	755	-3 -6	402 433
8	6 49	2 501	-8 -7 -	422 372	-3 -4	759	727	1	7	968	78 3	62	437	444	-9 -8	711	759	-3 -3	768 736
e e	7 28	1 328	-8 -6 1	024 1090	-3 -3	1618	1544	1	9	610	584	64	578	645	-9 -7	702	738	-3 -2	489 523
	0 34	3 347	_0 _4	421 405	-2 -2	1140	1122			A 4 4	378		471	491	-9 -6	369	469	-3 -1	779 756
9.			-0 7		- 2 - 1	700	714			410	207	4 12	278	317	-R -5	241	422	-2 0	441 1395
	1 27	5 312	-8 -3 4	204 323	-3 -1	/70	/10	- 1 1		410	37/	3 0	477	480	-7 -5	371	733	-2-17	437 837
9	1 2/	9 312	-8 -2 1	682 1/22	-2 0	433	407	1.1	13	3/4	330	<u> </u>	947	436	-7 -7	340	351	-2-17	42/ 33/
9	3 48	4 515	-7-17	353 334	-2-17	334	374	2	0	514	500	/ 1	2/4	542	-9 -3	803	814	-2-10	3/4 273
			-7-16	335 437	-2-15	384	465	2	1	790	769	72	502	560	-9 -2	511	513	-2-15	413 479
I	. = 6		-7-15	496 479	-2-11	483	490	2	2	609	550	74	545	622	-9 -1	823	788	-2-14	372 374
н	K F	O FC	-7-12	321 295	-2-10	359	406	2	3	414	428	76	542	569	-8-19	400	373	-2-11	766 821
-14 -	1 31	1 402	-7-11	405 419	-2 -9	788	1044	2	4	974	748	77	328	309	-8-16	494	462	-2-10	613 668
-13	0 40	1 603	-7-10	494 456	-2 -8	406	457	2	5	356	366	78	324	326	-8-14	459	440	-2 -9	857 915
-13-1	3 33	2 242	-7 -9	005 005	-2 -7	050	1016		Ā	844	895	7 9	324	318	-8-12	345	367	-2 -8	598 579
-13-3	A 30	J 272	-7 -9 1	104 1171	-3 -4	607	471	-	ž	400	680	7 10	314	217	-8-10	054	900	-2 -7	726 762
-13-	6 40	5 3/1	-7 -0 1		-2 -0		267	5	í.	340	207	7 10	201	270	-9 -9	071	842	-2 -4	943 942
-13 -	0 40	3 33/	-/ -/ (534 684	-2 -5	377	337	- -		207	20/	/ 14	371	370	-0 -0	800	408	-2-0	408 770
-13 -	5 26	7 232	-7 -6	660 691	-2 -4	933	875	21	10	225	252	8 8	360	423	-8 -/	508	423	-2 -5	873 720
-13 -	4 36	3 312	-7 -5 3	506 494	-2 -3	438	416	21	[1	412	440	8 5	322	384	-8 -6	930	1018	-2 -4	314 288
-12	0 26	1 283	-7 -4 4	478 459	-2 -2	682	667	2 1	12	607	553	86	330	325	-8 -4	614	591	-2 -3	740 793
-12-1	3 38	3 366	-7 -3 (518 636	-2 -1	1126	1091	2 1	14	547	472				-8 -3	322	335	-2 -2	996 933
-12-1	1 27	9 232	-7 -2 10	006 986	-1 0	1133	1155	2 1	16	304	268	L =	7		-7-17	433	361	-2 -1	1411 1480
-12-1	0 32	8 298	-6-17	389 340	-1-16	476	571	2 :	20	349	187	нк	FO	FC	-7-11	398	397	-1 0	1787 1777
-12	0 20	2 240	-6-15	515 448	-1-10	991	916	3	0	607	660	-14 -7	296	283	-7 -9	594	673	-1-18	390 380
-12 -	7 34	0 747	-4-12		-1 -9	1331	1240			051	1044	-14 -4	297	163	-7 -8	340	348	-1-16	547 549
-12 -	7 34		-0-13		-1 -0	1361	705	3	÷ '	847		-14 -4	240	200	-7 -7	872	827	-1-14	447 47A
-12 -	5 40	3 366	-6 -9 (511 034	-1 -0	/05	/35	3	š .	347	337	-14 -4	307	200	-/ -/	766	445	-1-17	707 777
-12 -	3 62	7 647	-6 -7	570 521	-1 -5	343	374	3	31	347	1435	-14 -2	420	41/	-/ -0	470	704	-1-12	202 332
-12 -	1 33	1 327	-6 -6 :	339 276	-1 -3	656	591	Э	4	397	375	-13 0	550	551	-7 -5	369	375	-1-10	103/ 1086
-11 -	6 27	1 315	-6 -5 5	565 580	-1 -2	1264	1244	Э	5	974	977	-13-10	397	371	-6-13	452	447	-1 -8	1389 1454
-11 -	4 46	7 471	-6 -4	536 621	-1 -1	235	205	3	6	320	370	-13 -8	345	373	-6-10	496	558	-1 -7	408 384
-11 -	1 33	1 321	-5-20	333 297	00	920	845	3	7 1	022	999	-13 -6	384	385	-6 -9	438	437	-1 -6	924 942
-10-1	1 33	2 281	-5-16	361 294	0 1	1768	1678	3	9	834	785	-13 -5	451	446	-6 -8	465	476	-1 -5	326 268
-10 -	9 44	4 452	-5-14	520 543	ō ē	707	707	- ā 1	iò	293	226	-13 -4	321	316	-6 -7	902	904	-1 -4	636 649
-10		3 340	-5-12	411 205	ŏ - 3	410	349		11		601	-13 -3	553	546	-6 -5	864	903	-1 -3	251 228
-10	7 30	3 380	-0-13			744	360	3		224	200	-13 -2	491	444	-6 -4	329	323	-1 -2	1419 1467
-10 -	7 37		-3-12	514 504		270	23/		14	370	307	-13-11	401	400	_8_18	244	212	ā ā	972 945
-10 -	2 52	0 255	-5-10	329 325	0 5	618	611	3	13	//4	/16	-12-11	411	407	-3-13	340	313	~ ~	776 743
-10 -	4 31	6 309	-3 -9 (601 672	06	350	282	31	14	414	430	-12 -9	361	351	-3-14	210	220		7/1 77/
-10 -	3 29	8 308	-5 -7	700 782	07	582	551	3	18	291	71	-12 -7	347	345	-3-12	252	343	0 2	340 4/7
-10 -	2 53	2 532	-56	701 1030	08	378	364	4	0	956	1050	-12 -5	581	579	-5-10	400	392	0 3	633 652
-10 -	1 45	7 506	-5 -4 1	160 1290	0 9	726	729	- 4	1	449	494	-12 -4	324	300	-5 -6	432	488	04	410 335
-9	0 60	3 580	-4-13	649 653	0 10	723	686	4	2	790	807	-12 -3	399	423	-5 -5	381	433	0 5	339 357
-9-1	7 41	4 386	-4-12	359 416	0 11	324	264	4	3	746	777	-12 -1	513	513	-5 -4	782	831	06	442 479
-9-1	5 43	3 434	-4-11	852 1007	0 12	350	301	4	4	741	696	-11-12	293	286	-5 -3	490	570	07	1082 1003
-9-1	1 42	3 582	-4 -0	420 430	0 13	384	294	, i	÷.	978	1001	-11 -7	396	376	-4 0	922	895	08	668 598
-9-1	A 20	0 393	-4 -9	125 540	0 15	522	471		ž	511	500	-11 -4	407	400	-4-16	321	208	0 9	664 659
-7-	0 30	1 872	-4-0		0 13	340	7/1	- 7	7	4777	431	_11 _7	241	339	-4-13	329	330	0 10	347 348
	9 80	1 8/2	-4 -/	796 891	0 17	368	283	- 1	<u> </u>	72/	741	-11 -3	301	320	-4-13	344	337	0 15	278 274
-9 -	8 26	7 386	-4 -6	487 520	0-17	300	309		8	377	245	-11 -2	230	53/	-4-10		555	0 15	375 274
-9 -	7 89	9 890	-4 -5 1	366 1366	0-15	430	492	4	9	287	277	-11 -1	380	383	-4 -8	253	244	0 10	333 201
-9 -	6 31	1 292	-4 -4	790 886	0-12	295	291	4 :	10	537	600	-10-17	406	316	-4 -6	510	264	0 17	358 393
-9 -	5 82	7 883	-4 -3 1	439 1514	0-11	279	225	4 :	11	478	465	-10-15	361	270	-4 -5	721	601	0-15	316 294
-9 -	4 34	9 440	-4 -2	477 459	0~10	635	691	4 :	13	461	395	-10 -9	474	471	-4 -4	513	542	0-10	312 333
-9-	3 40	4 377	-3 0 1	305 1225	0 -9	649	736	4	14	350	258	-10 -8	264	226	-4 -3	829	786	0 -9	616 676
	2 59	6 607	-3-18	367 346	0 – A	340	339	5	0	360	403	-10 -7	670	658	-4 -2	672	630	0 -8	588 620
0.	1 143	5 1465	-3-16	354 412	0 -7	605	618	5	ī	261	246	-10 -5	320	268	-4 -1	405	428	0 -7	1002 1005
_9	0 105	3 1919	-2-12	611 761	0 -4	366	310	ž	•	304	410	-10 -7	379	309	-3 0	499	448	0 -5	330 299
-0	0 #4	5 1717 4 60E	-3-13	354 400		440	403	ž	5	704	424	-10 -1	712	713	-3-17	393	382	īī	758 767
-8-	0 30	0 303	-3-12	338 723	0-5	070	003	3	3	107	447	-10 -1	002	077	-3-17	288	304	1 2	820 791
-B-3	0 78	/ 668	-3-11	577 684	0 -4	276	235	2	1	038	643	-9 0	872	8//	-3-12	200	500	1 2	413 435
-8-1	5 40	7 321	-3-10	712 799	1 1	574	618	5	5	329	374	-9-18	351	207	-3-11	324	244	ك 🚛	413 463

1 4	500	473		8		-6 -5	830	860	-1 -	4	509	516	5 5	268	273	-5 -7	618	682	0 15	316	300
1 5	597	544	н "к	ĒŪ	FC	-6 -4	367	370	-1 -	.3	252	175	5 6	299	301	-5 -6	299	300	0-13	325	309
1 4	\$07	441	-14 0	200	345	-5 0	237	254	- 1 -		000	1048	Ă 0	334	350	-5 -5	642	658	0 -7	284	286
1 7	414	A1A	-14 -6	400	334	-9-11	202	304	-1 -		394	305	4 3	250	362	-7 -4	500	624	0 -6	297	355
1 6	477	447	-14 -4	400	304	-5-10	422	500		2	774	404	0.0	230	JUL	-5 -3	474	420	0 -5	247	205
1 0		40/ 504	-14 -7	707	370	-5-10	100	500	×	÷.	876	870		- 0		-5-3	304	210	0 -5	317	365
1 10	200	374	-14 -2	320	330	-3 -7	308	324	Š	4	3/5	370		- 7	50	-5 -2	300	310	: :	447	200
1 10	32/	2/4	~13 0	320	345	-5 -8	4/1	321		<u> </u>	404	43/		FU	- FL	-5 -1	014	3/2	1 3	704	370
1 11	277	270	-13-11	358	335	/	364	347	0	3	385	334	-14 0	344	321	-4 0	302	200	1 4	524	525
1 12	401	318	-13-10	295	238	-5 -6	513	556	0	5	341	297	-14 -4	307	267	-4-10	378	378	1 5	600	379
1 13	437	422	-13 -8	478	387	-3 -3	719	770	0	7	668	635	-14 -3	290	234	-4 -9	524	537	1 7	417	396
1 14	337	300	-13 -7	314	301	-5 -4	763	761	0	8	549	543	-13 -5	497	516	-4 -8	368	447	1 10	348	328
1 15	518	475	-13 -5	474	416	-5 -3	601	551	0	9	409	451	-13 -3	400	386	-4 -7	501	535	1 13	371	354
2 1	918	717	-13 -3	514	534	-5 -2	463	420	0 1	0	334	257	-13 -1	311	315	-4 -5	305	263	22	358	364
22	970	887	-13 -2	360	342	-5 -1	745	702	0 1	3	285	239	-12-12	407	350	-4 -3	424	430	24	653	606
2 3	654	622	-13 -1	273	292	-4 0	728	722	0 1	5	341	266	-12 -6	486	442	-4 -2	599	641	26	439	440
2 4	1123	1120	-12 -9	266	245	-4-12	376	409	0 1	7	343	290	-12 -4	501	460	-4 -1	627	562	2 12	387	321
2 5	550	556	-12 -7	371	296	-4-10	451	466	0-1	3	267	248	-12 -3	268	274	-3-18	368	59	31	323	344
26	783	966	-12 -6	347	263	-4 -9	456	433	0 -	-9	383	411	-12 -2	442	452	-3-15	336	352	4 1	483	460
2 7	442	467	-12 -5	309	363	-4 -8	361	295	0 -	8	459	502	-11 -9	293	194	-3-11	505	536	4 3	268	283
2 8	361	316	-12 -4	428	433	-4 -7	421	414	0 -	•7	612	637	-11 -5	611	611	-3 -9	696	760	4 7	273	308
2 9	790	793	-12 -3	394	440	-4 -6	260	326	ō -	5	277	292	-11 -4	337	310	-3 -7	608	634	4 9	520	499
2 10	525	471	-12 -2	414	379	-4 -3	306	306	1	ō	449	444	-11 -3	508	489	-3 -5	579	633	s ó	404	465
2 11	376	354	_11 _9	291	249	-4 -4	543	543		τ.	437	394	-11 -1	350	378	-3 -4	290	217	5 2	500	540
2 12	713	607	_11 _9	250	174	-4 -2	470	616	-	•	707	347	-10-12	364	215	-3 -3	425	511	5 4	459	442
2 14	407	410	-11 -6	200	304		020	010	-	5	303	286	-10-12	304	221	-3 -3	442	404	2 0	437	
	70/	417	-11 -0	200	300	-4 -1	737	710		2	3/3	333	-10 -7	341	344	-3-2	1005	1240		10	
30	20/	20/	-11 -4	433	778	-3-17	417	433	-	2	3/3	224	-10 -5	337	300	-3 -1	1325	1307		10	EC
3 1	740	BEY	-11 -3	204	332	-3-15	419	315	1	3	238	443	-9-13	3/3	309	-2 0	/33	011			
3 3	995	1033	-10 0	289	270	-3-11	460	458	1	6	531	473	-9 -8	348	304	-2-10	383	409	-13 -6	307	227
3 5	1109	1089	-10-13	346	213	-3-10	349	355	1	7	501	495	-9 -5	366	293	-2-14	325	300	-13 -5	316	315
36	430	490	-10-11	302	172	-3 -9	1123	1242	1 1	0	289	295	-8-17	322	325	-2-11	270	309	-13 -4	497	345
3 7	644	606	-10 -9	371	333	-3 -7	1137	1231	11	2	341	284	-8-14	334	316	-2-10	507	525	-13 -2	262	201
38	364	319	-10 -7	350	416	-3 -5	412	438	1 1	3	330	277	-8-12	364	327	-2 -9	542	603	-12 0	282	273
3 9	662	666	-10 -6	269	154	-3 -3	800	802	1 1	5	339	347	-8-11	424	393	-2 -8	837	911	-12-10	352	261
3 11	724	730	-10 -1	647	623	-3 -1	1453	1405	5	1	385	407	-8 -7	611	612	-2 -7	320	350	-12 -6	454	465
3 13	513	430	-9-18	319	233	-2 0	1639	1649	2	2	794	805	-8 -6	623	596	-2 -6	727	755	-12 -5	284	216
3 15	410	324	-9-10	302	233	-2-17	340	460	2	3	458	464	-7-16	382	357	-2 -4	422	437	-12 -4	608	546
3 16	328	267	-9 -9	335	322	-2-16	332	330	2	4	886	873	-7-14	563	577	-2 -3	474	490	-12 -3	366	335
4 1	506	507	-9 -8	522	505	-2-14	486	497	2	6	501	495	-7-12	531	503	-2 -2	807	777	-12 -2	418	360
4 2	621	652	-9 -6	602	595	-2-11	487	573	2	7	520	505	-7-10	688	699	-2 -1	499	548	-11-13	381	369
4 3	563	560	-8 -9	472	545	-2-10	705	726	2	8	288	315	-7 -9	324	433	-1 0	762	797	-11-11	517	412
4 4	328	331	-8 -8	664	741	-2 -9	694	770	2	9	339	313	-7 -8	518	629	-1-14	278	173	-11 -7	437	416
4 5	446	456	-8 -7	397	337	-2 -8	1367	1438	2 1	ò	263	250	-7 -7	338	412	-1-10	311	412	-11 -5	641	621
4 6	391	378	-8 -6	633	598	-2 -7	963	1062	2 1	2	610	531	-7 -6	827	972	-1 -9	354	356	-10 -6	306	316
4 7	263	304	-8 -5	434	434	-2 -6	895	893	21	4	423	336	-7 -5	431	517	-1 -8	578	677	-9-12	339	265
	AIA	442	-7-14	213	109	-7 -9	244	422		0	249	245	-6-16	291	294	-1 -7	424	412	-9-11	398	197
A 10	417	375	-7-14	204	417	-2 -4	471	474	3	ĭ	430	430	-6-17	947	A14	-1 -6	A15	685	-9 -6	357	298
A 11	205	272	-7-12	802	444	-2 -7	477	722	3	•	700	220	-4-11	822	440	-1 -3	212	249	-8-12	478	422
A 17	202	244	-7-12	407	700	-2 -3	1340	1384	2	5	844	844	-6-11	431	811	-1 -3	440	451	_8 _9	326	327
4 12	202	209	-7-10	44/	302	-2 -2	1300	1330	2	3	207	200	-6-10	431	300	-1 -1	243	241	-7-17	511	609
- 13	337	330	-7 -9	013	224	-2 -1	1123	1000	3	-	341	32/	-0 -7	33/	307	-1 -1	306	550	-7-10	401	505
5 3	297	302	-/ -8	132	034	~1 0	1/16	1653	3	5	014	304	-0-8	43/	701		200	337	-7-10	401	903
5 10	359	2/1	-7 -6	499	505	-1-18	329	298	3	5	279	303	-6 -7	643	076	03		100	-7 -8	470	424
5 11	317	236	-6-18	361	323	-1-16	413	474	31	0	376	366	-0-0	348	381	<u> </u>	203	203 047	-7 -6	804	410
0 1	330	357	-6-15	374	316	-1-14	388	385	31	.1	367	389	-6 -5	850	891	0 5	303	34/	-/ -3	301	910
6 3	465	460	-6-13	503	540	-1-12	324	309	31	2	294	279	-6 -4	347	399	06	331	377	-7 -4	146	800
67	424	428	-6-12	489	521	-1-10	678	758	- 4	1	261	319	-6 -3	1453	1436	07	349	285	-6-13	366	428
71	347	402	-6-11	522	578	-1 -9	318	296	4	Э	337	364	-5-12	294	257	08	243	205	-6-11	580	374
74	337	437	-6-10	365	442	-1 -8	972	1017	4	5	265	263	-5-11	295	402	0 11	310	263	-6 -9	342	386
76	359	395	-6 -8	568	645	-1 -6	1099	1138	5	0	564	558	-5-10	319	369	0 13	366	307	-6 -8	319	347
			-6 -6	654	736	-1 -5	558	563	5	2	296	307	-5 -9	339	314	0 14	303	264	-6 -7	374	376

-6 -5	971	991	З	9	328	280	-1 -1	287	391	L =	13	
-6 -3	882	882	4	1	472	509	0 0	356	333	нк	FO	FC
-6 -1	564	568	4	з	339	343	02	514	503	-10 -7	373	322
-5 0	626	606					03	401	420	-9 -8	398	372
-5-12	439	494	L	_ =	11		0 4	469	461	-8 0	307	328
-5 -6	325	345	н	ĸ	FO	FC	0 5	44B	447	-7 -2	283	245
-5 -4	645	647	-13 -	-A-	332	289	õÃ	485	464	-6 -7	267	299
-5 -7	010	704	-12 -		201	210	~ ~	448	367	-6 -6	439	460
-5-2	404	/00	-13 -	3	301	447	Å 10	222	343	-4 -4	507	400
-3 -1	421	4992	-13 -		202	310		215	270		200	220
	717	437	-12 -	~	JEJ	400	× 11	410	216	-5-7	270	244
-4 -/	309	337	-11 -	-0	400	420	0 12	410	313		370	377
-4 -3	353	302	-11 -	~	427	324	0-12	315	31/	-5 -5	200	331
-4 -3	549	2//	-10-1	U,	374	241	0-11	207	270	-5 -3	370	803
-4 -2	387	314	-8 -	-6	371	387	0-10	309	233	-5 -2	282	311
-3 -9	374	379	-7-1	13	340	358	0~8	303	379	-5 -1	314	365
-3 -7	602	583	-7 -	-5	335	365	0 -6	310	450	-4 0	306	298
-3 -4	347	246	-7 -	-4	319	361	0 -5	372	415	-4 -3	299	248
-3 -3	441	469	-7 -	-3	552	582	1 3	449	436	-3 -4	270	181
-3 -1	632	564	-6-1	11	345	325	1 5	370	407			
-2 0	903	865	-6 -	-6	390	390				L =	14	
-2 -7	250	285	-6 -	-5	346	439	し =	12		нк	FO	FC
-2 -5	239	218	-6 -	-4	501	552	нк	FO	FC	-4 -1	326	286
-2 -4	274	246	-6 -	-3	353	334	-9-10	323	268			
-2 -2	461	429			358	289	-7 -5	321	439			
-1-12	354	337	-6 -	-1	291	303	-7 -3	352	332			
_1 _0	204	204	-5-1	Â.	205	224	-6 0	290	283			
-1 -4	412	444	-5-1	12	244	241	-6-12	341	380			
-1 -0	770	205			370	204		252	250			
-1 -2	3/8	365	-3-1	14 -	321	407	-0-0	334	207			
-1 -1	233	315	-3 -	-/	452	433	-0 -0	341	272			
0 0	411	321	-3 -	-0	478	222	~6 -4	204	014			
02	482	448	-3 -	-3	360	347	-6 -2	365	432			
03	479	485	-5 -	-4	532	524	~5-13	298	261			
04	591	555	-5 -	-3	274	242	-5-11	295	315			
05	552	529	-5 -	-1	398	404	~5 -9	390	420			
06	399	371	-4	0	398	399	-5 -6	356	383			
07	289	248	-4 -	-8	309	293	~5 -5	633	628			
08	438	407	-4 -	-6	303	337	~5 -3	518	520			
0 10	384	301	-4 -	-5	418	395	-5 -1	459	506			
0 11	304	279	-4 -	-3	566	622	~4 0	421	425			
0 12	340	278	-4 -	-1	321	332	-4-13	304	220			
0 14	436	355	-3-1	13	288	238	-4-11	312	311			
0-14	383	353	-3-1	10	271	198	-4 -7	283	253			
0-11	339	289	-3 -	-9	263	228	-4 -5	459	478			
0 -8	294	391	-3 -	-7	400	360	~4 -4	336	282			
0 -6	270	254	-2.		201	321	-4 -3	330	373			
05	403	577	-3-		2001	340	-7 -4	255	210			
0 - 3	400	332	-3-		070	307	-3 -4	200	218			
1 0	440	470	-3 -		3/3	307	-2 -/	270	313			
1 1	366	3/3	-3 -	-1	282	212	~2 -4	334	363			
12	301	352	-2 -	-6	300	301	-1 0	270	201			
1 3	288	581	-2 -	-3	341	357	-1 -6	339	332			
1 5	625	585	-2 -	-4	308	326	-1 -4	481	555			
17	313	336	-2 -	-3	265	285	-1 -2	327	374			
1 11	421	372	-1	0	334	346	0 0	371	347			
1 13	383	301	-1-1	12	312	339	03	336	342			
24	284	272	-1-1	11	325	290	04	341	343			
27	279	261	-1 -	-8	277	276	0 -6	272	314			
2 10	433	422	-1 -	-6	448	534						
3 3	324	305	-1 -	-4	582	622						
37	380	365	-1 -	-2	431	486						

153

.

•